One model to unite them all: Personalized federated learning of multi-contrast MRI synthesis

buir.contributor.authorDalmaz, Onat
buir.contributor.authorMirza, Muhammad Usama
buir.contributor.authorElmas, Gökberk
buir.contributor.authorÖzbey, Muzaffer
buir.contributor.authorDar, Salman UI Hassan
buir.contributor.authorÇukur, Tolga
buir.contributor.orcidDalmaz, Onat|0000-0001-7978-5311
buir.contributor.orcidMirza, Muhammad Usama|0009-0001-2146-7940
buir.contributor.orcidElmas, Gökberk|0000-0003-0124-6048
buir.contributor.orcidÖzbey, Muzaffer|0000-0002-6262-8915
buir.contributor.orcidDar, Salman UI Hassan|0000-0002-7603-4245
buir.contributor.orcidÇukur, Tolga|0000-0002-2296-851X
dc.citation.epage103121-19
dc.citation.spage103121-1
dc.citation.volumeNumber94
dc.contributor.authorDalmaz, Onat
dc.contributor.authorMirza, Muhammad Usama
dc.contributor.authorElmas, Gökberk
dc.contributor.authorÖzbey, Muzaffer
dc.contributor.authorDar, Salman UI Hassan
dc.contributor.authorCeyani, Emir
dc.contributor.authorKarlı Oğuz, Kader
dc.contributor.authorAvestimehr, Salman
dc.contributor.authorÇukur, Tolga
dc.date.accessioned2025-02-19T15:57:00Z
dc.date.available2025-02-19T15:57:00Z
dc.date.issued2024-05
dc.departmentAysel Sabuncu Brain Research Center (BAM)
dc.departmentNational Magnetic Resonance Research Center (UMRAM)
dc.departmentDepartment of Electrical and Electronics Engineering
dc.description.abstractCuration of large, diverse MRI datasets via multi-institutional collaborations can help improve learningof generalizable synthesis models that reliably translate source- onto target-contrast images. To facilitatecollaborations, federated learning (FL) adopts decentralized model training while mitigating privacy concernsby avoiding sharing of imaging data. However, conventional FL methods can be impaired by the inherentheterogeneity in the data distribution, with domain shifts evident within and across imaging sites. Here weintroduce the first personalized FL method for MRI Synthesis (pFLSynth) that improves reliability against dataheterogeneity via model specialization to individual sites and synthesis tasks (i.e., source-target contrasts).To do this, pFLSynth leverages an adversarial model equipped with novel personalization blocks that controlthe statistics of generated feature maps across the spatial/channel dimensions, given latent variables specificto sites and tasks. To further promote communication efficiency and site specialization, partial networkaggregation is employed over later generator stages while earlier generator stages and the discriminatorare trained locally. As such, pFLSynth enables multi-task training of multi-site synthesis models with highgeneralization performance across sites and tasks. Comprehensive experiments demonstrate the superiorperformance and reliability of pFLSynth in MRI synthesis against prior federated methods
dc.description.provenanceSubmitted by Muhammed Murat Uçar (murat.ucar@bilkent.edu.tr) on 2025-02-19T15:57:00Z No. of bitstreams: 1 One_model_to_unite_them_all_Personalized_federated_learning_of_multi-contrast_MRI_synthesis.pdf: 3019249 bytes, checksum: f43a26457b82073d65e6e823dabb1ec8 (MD5)en
dc.description.provenanceMade available in DSpace on 2025-02-19T15:57:00Z (GMT). No. of bitstreams: 1 One_model_to_unite_them_all_Personalized_federated_learning_of_multi-contrast_MRI_synthesis.pdf: 3019249 bytes, checksum: f43a26457b82073d65e6e823dabb1ec8 (MD5) Previous issue date: 2024-05en
dc.embargo.release1 May 2026
dc.identifier.doi10.1016/j.media.2024.103121
dc.identifier.eissn1361-8423
dc.identifier.issn1361-8415
dc.identifier.urihttps://hdl.handle.net/11693/116457
dc.language.isoEnglish
dc.publisherELSEVIER
dc.relation.isversionofhttps://dx.doi.org/10.1016/j.media.2024.103121
dc.rightsCC BY-NC 4.0 DEED (Attribution-NonCommercial 4.0 International)
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.source.titleMedical Image Analysis
dc.subjectFederated learning
dc.subjectPersonalization
dc.subjectHeterogeneity
dc.subjectMRI
dc.subjectSynthesis
dc.subjectTranslation
dc.titleOne model to unite them all: Personalized federated learning of multi-contrast MRI synthesis
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
One_model_to_unite_them_all_Personalized_federated_learning_of_multi-contrast_MRI_synthesis.pdf
Size:
2.88 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: