A hypergraph partitioning model for profile minimization

Date

2019

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

SIAM Journal on Scientific Computing

Print ISSN

1064-8275

Electronic ISSN

Publisher

Society for Industrial and Applied Mathematics Publications

Volume

41

Issue

1

Pages

A83 - A108

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
0
views
28
downloads

Series

Abstract

In this paper, the aim is to symmetrically permute the rows and columns of a given sparse symmetric matrix so that the profile of the permuted matrix is minimized. We formulate this permutation problem by first defining the m-way ordered hypergraph partitioning (moHP) problem and then showing the correspondence between profile minimization and moHP problems. For solving the moHP problem, we propose a recursive-bipartitioning-based hypergraph partitioning algorithm, which we refer to as the moHP algorithm. This algorithm achieves a linear part ordering via left-toright bipartitioning. In this algorithm, we utilize fixed vertices and two novel cut-net manipulation techniques in order to address the minimization objective of the moHP problem. We show the correctness of the moHP algorithm and describe how the existing partitioning tools can be utilized for its implementation. Experimental results on an extensive set of matrices show that the moHP algorithm obtains a smaller profile than the state-of-the-art profile reduction algorithms, which then results in considerable improvements in the factorization runtime in a direct solver.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)