The three equivalent forms of completely positive maps on matrices

dc.citation.epage98en_US
dc.citation.issueNumber1en_US
dc.citation.spage79en_US
dc.citation.volumeNumber1 (LIX)en_US
dc.contributor.authorGheondea, A.en_US
dc.date.accessioned2019-01-24T15:46:56Z
dc.date.available2019-01-24T15:46:56Z
dc.date.issued2010en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractMotived by the importance of quantum operations in quantum information theory, we rigorously present the three equivalent (Stinespring, Kraus, and Choi) forms of completely positive maps on full C∗-algebras of matrices, as well as their connection with the Arveson’s Radon-Nikodym derivative. In order to make this accessible to a broader audience we employ mostly linear algebra facts and carefully review the prerequisites.en_US
dc.identifier.issn2067-9009
dc.identifier.urihttp://hdl.handle.net/11693/48319
dc.publisherEditura Universitatea din Bucurestien_US
dc.source.titleAnnals of the University of Bucharest (Mathematical Series)en_US
dc.subjectC∗-algebraen_US
dc.subjectCompletely positive mapen_US
dc.subjectTensor producten_US
dc.subjectStinespring representationen_US
dc.subjectKraus formen_US
dc.subjectChoi’s matrixen_US
dc.subjectRadonNikodym derivativeen_US
dc.subjectQuantum operationen_US
dc.titleThe three equivalent forms of completely positive maps on matricesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
The_three_equivalent_forms_of_completely_positive_maps_on_matrices.pdf
Size:
213.26 KB
Format:
Adobe Portable Document Format
Description:
Full printable version

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: