Effect of oxygen supply on metabolism of immobilized and suspended Escherichia coli
dc.citation.epage | 702 | en_US |
dc.citation.issueNumber | 6 | en_US |
dc.citation.spage | 697 | en_US |
dc.citation.volumeNumber | 51 | en_US |
dc.contributor.author | Inanç, E. | en_US |
dc.contributor.author | Miller J. E. | en_US |
dc.contributor.author | DiBiasio, D. | en_US |
dc.date.accessioned | 2016-02-08T10:50:17Z | |
dc.date.available | 2016-02-08T10:50:17Z | |
dc.date.issued | 1996 | en_US |
dc.department | Department of Molecular Biology and Genetics | en_US |
dc.description.abstract | The effect of reduced oxygen supply on the production of a recombinant protein (plasmid-encoded β-galactosidase) was investigated in Escherichia coli. A novel modified bubble tank reactor was used to provide a direct comparison between immobilized and suspended cells in identical environments except for the immobilization matrix. Decreased oxygen supply led to increased β-galactosidase synthesis by both immobilized and suspended cells. Immobilized cells produced similar amounts of β-galactosidase as the suspended cells. Lactose consumption and acetate production, on a per cell basis, were significantly higher in immobilized cells, suggesting that immobilized cells utilized fermentative metabolism. However, a transport analysis of the immobilized cell system showed that immobilized cells were not subject to either external or internal mass transfer gradients.The effect of reduced oxygen supply on the production of a recombinant protein (plasmid-encoded β-galactosidase) was investigated in Escherichia coli. A novel modified bubble tank reactor was used to provide a direct comparison between immobilized and suspended cells in identical environments except for the immobilization matrix. Decreased oxygen supply led to increased β-galactosidase synthesis by both immobilized and suspended cells. Immobilized cells produced similar amounts of β-galactosidase as the suspended cells. Lactose consumption and acetate production, on a per cell basis, were significantly higher in immobilized cells, suggesting that immobilized cells utilized fermentative metabolism. However, a transport analysis of the immobilized cell system showed that immobilized cells were not subject to either external or internal mass transfer gradients. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T10:50:17Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 1996 | en |
dc.identifier.doi | 10.1002/(SICI)1097-0290(19960920)51:6<697 | en_US |
dc.identifier.issn | 0006-3592 | |
dc.identifier.uri | http://hdl.handle.net/11693/25776 | |
dc.language.iso | English | en_US |
dc.publisher | John Wiley & Sons Inc, New York, NY, United States | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1002/(SICI)1097-0290(19960920)51:6<697 | en_US |
dc.source.title | Biotechnology and Bioengineering | en_US |
dc.subject | Acetate | en_US |
dc.subject | Alginate immobilization | en_US |
dc.subject | Oxygen transport | en_US |
dc.subject | Cell immobilization | en_US |
dc.subject | Composition effects | en_US |
dc.subject | Enzymes | en_US |
dc.subject | Mass transfer | en_US |
dc.subject | Metabolism | en_US |
dc.subject | Oxygen supply | en_US |
dc.subject | Proteins | en_US |
dc.title | Effect of oxygen supply on metabolism of immobilized and suspended Escherichia coli | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Effect of oxygen supply on metabolism of immobilized and suspended Escherichia coli.pdf
- Size:
- 559.23 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version