Detecting user types in object ranking decisions
Date
Authors
Advisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Abstract
With the emergence of Web 2.0 applications, where information is not only shared across the internet, but also syndicated, evaluated, selected, recombined, edited, etc., quality emergence by collaborative effort from many users becomes crucial. However, users may have low expertise, subjective views, or competitive goals. Therefore, we need to identify cooperative users with strong expertise and high objectivity. As a first step towards this aim, we propose criteria for user type classification based on prior work in psychology and derived from observations in Web 2.0. We devise a statistical model for many different user types, and detection methods for those user types. Finally, we evaluate and demonstrate both model and detection methods by means of an experimental setup. Copyright 2009 ACM.