Fractional Fourier Optics
buir.contributor.author | Haldun M. Özaktaş | |
dc.citation.epage | 751 | en_US |
dc.citation.issueNumber | 4 | en_US |
dc.citation.spage | 743 | en_US |
dc.citation.volumeNumber | 12 | en_US |
dc.contributor.author | Özaktaş, Haldun M. | |
dc.contributor.author | Mendlovic, D. | |
dc.date.accessioned | 2015-07-28T12:07:28Z | |
dc.date.available | 2015-07-28T12:07:28Z | |
dc.date.issued | 1995-04 | en_US |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.description.abstract | There exists a fractional Fourier-transform relation between the amplitude distributions of light on two spherical surfaces of given radii and separation. The propagation of light can be viewed as a process of continual fractional Fourier transformation. As light propagates, its amplitude distribution evolves through fractional transforms of increasing order. This result allows us to pose the fractional Fourier transform as a tool for analyzing and describing optical systems composed of an arbitrary sequence of thin lenses and sections of free space and to arrive at a general class of fractional Fourier-transforming systems with variable input and output scale factors. | en_US |
dc.description.provenance | Made available in DSpace on 2015-07-28T12:07:28Z (GMT). No. of bitstreams: 1 10.1364-JOSAA.12.000743.pdf: 442309 bytes, checksum: afb00c878a62d393f045d528e2c74c16 (MD5) | en |
dc.identifier.doi | 10.1364/JOSAA.12.000743 | en_US |
dc.identifier.issn | 1084-7529 | |
dc.identifier.uri | http://hdl.handle.net/11693/13643 | |
dc.language.iso | English | en_US |
dc.publisher | Optical Society of America | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1364/JOSAA.12.000743 | en_US |
dc.source.title | Journal of the Optical Society of America A | en_US |
dc.subject | Diffraction | en_US |
dc.subject | Fourier Optics | en_US |
dc.subject | Optical Information Processing | en_US |
dc.subject | Fractional Fourier Transforms. | en_US |
dc.title | Fractional Fourier Optics | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 10.1364-JOSAA.12.000743.pdf
- Size:
- 431.94 KB
- Format:
- Adobe Portable Document Format