Reflexivity of rings via nilpotent elements
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
An ideal I of a ring R is called left N-reflexive if for any a ∈ nil(R) and b ∈ R, aRb ⊆ I implies bRa ⊆ I, where nil(R) is the set of all nilpotent elements of R. The ring R is called left N-reflexive if the zero ideal is left N-reflexive. We study the properties of left N-reflexive rings and related concepts. Since reflexive rings and reduced rings are left N-reflexive rings, we investigate the sufficient conditions for left N-reflexive rings to be reflexive and reduced. We first consider basic extensions of left N-reflexive rings. For an ideal-symmetric ideal I of a ring R, R/I is left N-reflexive. If an ideal I of a ring R is reduced as a ring without identity and R/I is left N-reflexive, then R is left N-reflexive. If R is a quasi-Armendariz ring and the coefficients of any nilpotent polynomial in R[x] are nilpotent in R, it is proved that R is left N-reflexive if and only if R[x] is left N-reflexive. We show that the concept of left N-reflexivity is weaker than that of reflexivity and stronger than that of right idempotent reflexivity.