Adaptive frame coalescing in energy efficient ethernet with model predictive control and queuing theory

Series

Abstract

Frame coalescing is a well-established technique which manages the low power idle (LPI) mode supported by energy efficient Ethernet (EEE) interfaces. Frame coalescing enables EEE interfaces to remain in the LPI mode for a certain amount of time upon the arrival of the first frame (timer-based coalescing), or until a predefined amount of traffic accumulates in the transmission buffer (size-based coalescing). In this paper, we propose a novel open-loop dynamic coalescing technique that is based on model predictive control (MPC) and queuing theory. In contrast to conventional timer-based coalescing, the proposed method enables the update of the timer parameter repeatedly throughout the duration of the LPI mode of a single coalescing cycle by taking into account the arrival instants and sizes, of the frames waiting in the buffer. Two different methods, namely MPC-mean and MPC-tail, are proposed which attempt to minimize the energy consumption of the Ethernet link, under constraints on mean and tail of the queue waiting time, respectively. The effectiveness of the proposed dynamic MPC-based coalescing algorithms are validated using simulations with synthetic and actual traffic traces.

Source Title

IEEE Transactions on Green Communications and Networking

Publisher

IEEE

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English