Joint detection and decoding in the presence of prior information with uncertainty

Date

2016

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

IEEE Signal Processing Letters

Print ISSN

1070-9908

Electronic ISSN

Publisher

Institute of Electrical and Electronics Engineers Inc.

Volume

23

Issue

11

Pages

1602 - 1606

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

An optimal decision framework is proposed for joint detection and decoding when the prior information is available with some uncertainty. The proposed framework provides tradeoffs between the average inclusive error probability (computed using estimated prior probabilities) and the worst case inclusive error probability according to the amount of uncertainty while satisfying constraints on the probability of false alarm and the maximum probability of miss-detection. Theoretical results that characterize the structure of the optimal decision rule according to the proposed criterion are obtained. The proposed decision rule reduces to some well-known detectors in the case of perfect prior information or when the constraints on the probabilities of miss-detection and false alarm are relaxed. Numerical examples are provided to illustrate the theoretical results. © 2016 IEEE.

Course

Other identifiers

Book Title

Citation