Unsupervised MRI reconstruction via zero-shot learned adversarial transformers

Date

2022-01-27

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

IEEE Transactions on Medical Imaging

Print ISSN

0278-0062

Electronic ISSN

1558-254X

Publisher

Institute of Electrical and Electronics Engineers Inc.

Volume

41

Issue

7

Pages

1747 - 1763

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
1
views
147
downloads

Series

Abstract

Supervised reconstruction models are characteristically trained on matched pairs of undersampled and fully-sampled data to capture an MRI prior, along with supervision regarding the imaging operator to enforce data consistency. To reduce supervision requirements, the recent deep image prior framework instead conjoins untrained MRI priors with the imaging operator during inference. Yet, canonical convolutional architectures are suboptimal in capturing long-range relationships, and priors based on randomly initialized networks may yield suboptimal performance. To address these limitations, here we introduce a novel unsupervised MRI reconstruction method based on zero-Shot Learned Adversarial TransformERs (SLATER). SLATER embodies a deep adversarial network with cross-attention transformers to map noise and latent variables onto coil-combined MR images. During pre-training, this unconditional network learns a high-quality MRI prior in an unsupervised generative modeling task. During inference, a zero-shot reconstruction is then performed by incorporating the imaging operator and optimizing the prior to maximize consistency to undersampled data. Comprehensive experiments on brain MRI datasets clearly demonstrate the superior performance of SLATER against state-of-the-art unsupervised methods.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)