Degree of reductivity of a modular representation

dc.citation.epage1650023-12en_US
dc.citation.issueNumber3en_US
dc.citation.spage1650023-1en_US
dc.citation.volumeNumber19en_US
dc.contributor.authorKohls, M.en_US
dc.contributor.authorSezer, M.en_US
dc.date.accessioned2018-04-12T11:01:52Z
dc.date.available2018-04-12T11:01:52Z
dc.date.issued2017en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractFor a finite-dimensional representation V of a group G over a field F, the degree of reductivity δ(G,V) is the smallest degree d such that every nonzero fixed point υ ∈ VG/{0} can be separated from zero by a homogeneous invariant of degree at most d. We compute δ(G,V) explicitly for several classes of modular groups and representations. We also demonstrate that the maximal size of a cyclic subgroup is a sharp lower bound for this number in the case of modular abelian p-groups. © 2017 World Scientific Publishing Company.en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T11:01:52Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2017en
dc.identifier.doi10.1142/S0219199716500231en_US
dc.identifier.eissn1793-6683
dc.identifier.issn0219-1997
dc.identifier.urihttp://hdl.handle.net/11693/37070
dc.language.isoEnglishen_US
dc.publisherWorld Scientific Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1142/S0219199716500231en_US
dc.source.titleCommunications in Contemporary Mathematicsen_US
dc.subjectDegree boundsen_US
dc.subjectInvariant theoryen_US
dc.subjectKlein four groupen_US
dc.subjectModular groupsen_US
dc.subjectReductive groupsen_US
dc.subjectSeparating invariantsen_US
dc.subject13A50en_US
dc.titleDegree of reductivity of a modular representationen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Degree_of_reductivity_of_a_modular_representation.pdf
Size:
195.64 KB
Format:
Adobe Portable Document Format
Description:
Full printable version