Multiscale self-asssembly of silicon quantum dots into an anisotropic three-dimensional random network
dc.citation.epage | 1948 | en_US |
dc.citation.issueNumber | 3 | en_US |
dc.citation.spage | 1942 | en_US |
dc.citation.volumeNumber | 16 | en_US |
dc.contributor.author | Ilday, S. | en_US |
dc.contributor.author | Ilday, F. O. | en_US |
dc.contributor.author | Hübner R. | en_US |
dc.contributor.author | Prosa, T. J. | en_US |
dc.contributor.author | Martin, I. | en_US |
dc.contributor.author | Nogay, G. | en_US |
dc.contributor.author | Kabacelik, I. | en_US |
dc.contributor.author | Mics, Z. | en_US |
dc.contributor.author | Bonn, M. | en_US |
dc.contributor.author | Turchinovich, D. | en_US |
dc.contributor.author | Toffoli, H. | en_US |
dc.contributor.author | Toffoli, D. | en_US |
dc.contributor.author | Friedrich, D. | en_US |
dc.contributor.author | Schmidt, B. | en_US |
dc.contributor.author | Heinig, K.-H. | en_US |
dc.contributor.author | Turan, R. | en_US |
dc.date.accessioned | 2018-04-12T10:51:21Z | |
dc.date.available | 2018-04-12T10:51:21Z | |
dc.date.issued | 2016 | en_US |
dc.department | Department of Physics | en_US |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.description.abstract | Multiscale self-assembly is ubiquitous in nature but its deliberate use to synthesize multifunctional three-dimensional materials remains rare, partly due to the notoriously difficult problem of controlling topology from atomic to macroscopic scales to obtain intended material properties. Here, we propose a simple, modular, noncolloidal methodology that is based on exploiting universality in stochastic growth dynamics and driving the growth process under far-from-equilibrium conditions toward a preplanned structure. As proof of principle, we demonstrate a confined-but-connected solid structure, comprising an anisotropic random network of silicon quantum-dots that hierarchically self-assembles from the atomic to the microscopic scales. First, quantum-dots form to subsequently interconnect without inflating their diameters to form a random network, and this network then grows in a preferential direction to form undulated and branching nanowire-like structures. This specific topology simultaneously achieves two scale-dependent features, which were previously thought to be mutually exclusive: good electrical conduction on the microscale and a bandgap tunable over a range of energies on the nanoscale. © 2016 American Chemical Society. | en_US |
dc.description.provenance | Made available in DSpace on 2018-04-12T10:51:21Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2016 | en |
dc.identifier.doi | 10.1021/acs.nanolett.5b05158 | en_US |
dc.identifier.issn | 1530-6984 | |
dc.identifier.uri | http://hdl.handle.net/11693/36733 | |
dc.language.iso | English | en_US |
dc.publisher | American Chemical Society | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1021/acs.nanolett.5b05158 | en_US |
dc.source.title | Nano Letters | en_US |
dc.subject | Hierarchical | en_US |
dc.subject | Multiscale | en_US |
dc.subject | Random network | en_US |
dc.subject | Self-assembly | en_US |
dc.subject | Si | en_US |
dc.subject | Stochastic deposition | en_US |
dc.title | Multiscale self-asssembly of silicon quantum dots into an anisotropic three-dimensional random network | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Multiscale Self-Assembly of Silicon Quantum Dots into an Anisotropic Three-Dimensional Random Network.pdf
- Size:
- 4.77 MB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version