Multiscale self-asssembly of silicon quantum dots into an anisotropic three-dimensional random network

dc.citation.epage1948en_US
dc.citation.issueNumber3en_US
dc.citation.spage1942en_US
dc.citation.volumeNumber16en_US
dc.contributor.authorIlday, S.en_US
dc.contributor.authorIlday, F. O.en_US
dc.contributor.authorHübner R.en_US
dc.contributor.authorProsa, T. J.en_US
dc.contributor.authorMartin, I.en_US
dc.contributor.authorNogay, G.en_US
dc.contributor.authorKabacelik, I.en_US
dc.contributor.authorMics, Z.en_US
dc.contributor.authorBonn, M.en_US
dc.contributor.authorTurchinovich, D.en_US
dc.contributor.authorToffoli, H.en_US
dc.contributor.authorToffoli, D.en_US
dc.contributor.authorFriedrich, D.en_US
dc.contributor.authorSchmidt, B.en_US
dc.contributor.authorHeinig, K.-H.en_US
dc.contributor.authorTuran, R.en_US
dc.date.accessioned2018-04-12T10:51:21Z
dc.date.available2018-04-12T10:51:21Z
dc.date.issued2016en_US
dc.departmentDepartment of Physicsen_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.description.abstractMultiscale self-assembly is ubiquitous in nature but its deliberate use to synthesize multifunctional three-dimensional materials remains rare, partly due to the notoriously difficult problem of controlling topology from atomic to macroscopic scales to obtain intended material properties. Here, we propose a simple, modular, noncolloidal methodology that is based on exploiting universality in stochastic growth dynamics and driving the growth process under far-from-equilibrium conditions toward a preplanned structure. As proof of principle, we demonstrate a confined-but-connected solid structure, comprising an anisotropic random network of silicon quantum-dots that hierarchically self-assembles from the atomic to the microscopic scales. First, quantum-dots form to subsequently interconnect without inflating their diameters to form a random network, and this network then grows in a preferential direction to form undulated and branching nanowire-like structures. This specific topology simultaneously achieves two scale-dependent features, which were previously thought to be mutually exclusive: good electrical conduction on the microscale and a bandgap tunable over a range of energies on the nanoscale. © 2016 American Chemical Society.en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T10:51:21Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2016en
dc.identifier.doi10.1021/acs.nanolett.5b05158en_US
dc.identifier.issn1530-6984
dc.identifier.urihttp://hdl.handle.net/11693/36733
dc.language.isoEnglishen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/acs.nanolett.5b05158en_US
dc.source.titleNano Lettersen_US
dc.subjectHierarchicalen_US
dc.subjectMultiscaleen_US
dc.subjectRandom networken_US
dc.subjectSelf-assemblyen_US
dc.subjectSien_US
dc.subjectStochastic depositionen_US
dc.titleMultiscale self-asssembly of silicon quantum dots into an anisotropic three-dimensional random networken_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Multiscale Self-Assembly of Silicon Quantum Dots into an Anisotropic Three-Dimensional Random Network.pdf
Size:
4.77 MB
Format:
Adobe Portable Document Format
Description:
Full printable version