Multi-contrast mr image synthesis with a brownian diffusion model

Series

Abstract

Magnetic Resonance Imaging (MRI) plays a significant role in medical diagnostics. However, prolonged scan times may hinder its widespread applicability in clinical settings. To mitigate this challenge, certain contrasts within multi-contrast MRI protocols can be excluded, and these target contrasts can then be synthesized from the acquired set of source contrasts retrospectively. Recently introduced generative adversarial and diffusion based MRI synthesis models yield enhanced performance against classical methods, yet there can still benefit from technical improvements. In this study, we propose a Brownian diffusion-based multi-contrast MR image synthesis model. Existing diffusion models synthesize images starting from a Gaussian noise sample, so guidance from the source contrast images are weakened. Conditional denoising diffusion models employs a weak conditioning during reverse process within the denoising network that may result in suboptimal sample generation due to poor convergence to target distribution. Capitalizing Brownian diffusion, the proposed model instead incorporates stronger guidance toward the target contrast distribution via a refined diffusion process. Experimental results suggest that our method attains higher performance in noise reduction and capture of tissue structural details over existing methods.

Source Title

Publisher

IEEE

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English