CUDA based implementation of flame detection algorithms in day and infrared camera videos

Date

2011

Editor(s)

Advisor

Çetin, A. Enis

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

Automatic fire detection in videos is an important task but it is a challenging problem. Video based high performance fire detection algorithms are important for the detection of forest fires. The usage area of fire detection algorithms can further be extended to the places like state and heritage buildings, in which surveillance cameras are installed. In uncontrolled fires, early detection is crucial to extinguish the fire immediately. However, most of the current fire detection algorithms either suffer from high false alarm rates or low detection rates due to the optimization constraints for real-time performance. This problem is also aggravated by the high computational complexity in large areas, where multicamera surveillance is required. In this study, our aim is to speed up the existing color video fire detection algorithms by implementing in CUDA, which uses the parallel computational power of Graphics Processing Units (GPU). Our method does not only speed up the existing algorithms but it can also reduce the optimization constraints for real-time performance to increase detection probability without affecting false alarm rates. In addition, we have studied several methods that detect flames in infrared video and proposed an improvement for the algorithm to decrease the false alarm rate and increase the detection rate of the fire.

Course

Other identifiers

Book Title

Degree Discipline

Electrical and Electronic Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

item.page.isversionof