Minimax optimal algorithms for adversarial bandit problem with multiple plays

buir.contributor.authorVural, Nuri Mert
buir.contributor.authorGökçesu, Hakan
buir.contributor.authorKozat, Süleyman Serdar
dc.citation.epage4398en_US
dc.citation.issueNumber16en_US
dc.citation.spage4383en_US
dc.citation.volumeNumber67en_US
dc.contributor.authorVural, Nuri Mert
dc.contributor.authorGökçesu, Hakan
dc.contributor.authorGökçesu, K.
dc.contributor.authorKozat, Süleyman Serdar
dc.date.accessioned2021-03-17T12:05:56Z
dc.date.available2021-03-17T12:05:56Z
dc.date.issued2019
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.description.abstractWe investigate the adversarial bandit problem with multiple plays under semi-bandit feedback. We introduce a highly efficient algorithm that asymptotically achieves the performance of the best switching m-arm strategy with minimax optimal regret bounds. To construct our algorithm, we introduce a new expert advice algorithm for the multiple-play setting. By using our expert advice algorithm, we additionally improve the best-known high-probability bound for the multi-play setting by O(√(m)). Our results are guaranteed to hold in an individual sequence manner since we have no statistical assumption on the bandit arm gains. Through an extensive set of experiments involving synthetic and real data, we demonstrate significant performance gains achieved by the proposed algorithm with respect to the state-of-the-art algorithms.en_US
dc.description.provenanceSubmitted by Onur Emek (onur.emek@bilkent.edu.tr) on 2021-03-17T12:05:56Z No. of bitstreams: 1 Minimax_Optimal_Algorithms_for_Adversarial_Bandit_Problem_With_Multiple_Plays.pdf: 1021452 bytes, checksum: 213618bafbf2ced0516a8b3f17332249 (MD5)en
dc.description.provenanceMade available in DSpace on 2021-03-17T12:05:56Z (GMT). No. of bitstreams: 1 Minimax_Optimal_Algorithms_for_Adversarial_Bandit_Problem_With_Multiple_Plays.pdf: 1021452 bytes, checksum: 213618bafbf2ced0516a8b3f17332249 (MD5) Previous issue date: 2019en
dc.identifier.doi10.1109/TSP.2019.2928952en_US
dc.identifier.issn1053-587X
dc.identifier.urihttp://hdl.handle.net/11693/75951
dc.language.isoEnglishen_US
dc.publisherIEEEen_US
dc.relation.isversionofhttps://dx.doi.org/10.1109/TSP.2019.2928952en_US
dc.source.titleIEEE Transactions on Signal Processingen_US
dc.subjectAdversarial multi-armed banditen_US
dc.subjectMultiple playsen_US
dc.subjectSwitching banditen_US
dc.subjectMinimax optimalen_US
dc.subjectIndividual sequence manneren_US
dc.titleMinimax optimal algorithms for adversarial bandit problem with multiple playsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Minimax_Optimal_Algorithms_for_Adversarial_Bandit_Problem_With_Multiple_Plays.pdf
Size:
997.51 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: