Development of closed-form Green's functions to investigate apertures on a pec circular cylinder covered with dielectric layer(s)

Date

2009

Editor(s)

Advisor

Ertürk, Vakur B.

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
3
views
8
downloads

Series

Abstract

Closed-form Green’s function representations for magnetic sources, which is in general used to represent aperture type antennas on conducting surfaces, are developed for a cylindrically stratified media. The resultant expressions are valid for almost all possible placements of source and observation points including the cases where ρ = ρ 0 and φ = φ 0 . Hence, they can be used in a Method of Moments solution procedure. In the course of obtaining these expressions, the conventional spectral domain Green’s function representations for magnetic sources are reorganized in order to handle relatively large cylinders and the axial line problem. Available acceleration techniques that exist in the literature are implemented to perform the summation over the cylindrical eigenmodes efficiently and to handle some numerical problems along the kz integration path. Then, the resulting expressions are transformed to the spatial domain using the discrete complex image method with the help of the generalized pencil of function method, where a two-level approach is used. It should be noted that a similar methodology has recently been developed for electrical sources and very accurate results have been presented. In this work, its magnetic source counterpart has been developed. Numerical results are presented in two different forms: (a) ρ 6= ρ 0 ; the magnetic source is on the conducting cylinder, which forms the innermost layer of the dielectric coated cylinder. This is a typical scenario for the radiation problem of aperture type antennas. (b) ρ = ρ 0 ; both the magnetic source and the observations points are on the conducting cylinder which forms the innermost layer. There is a singledielectric layer on the top of them. This is a typical scenario for the mutual coupling between aperture type antennas.

Source Title

Publisher

Course

Other identifiers

Book Title

Degree Discipline

Electrical and Electronic Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)

Language

English

Type