Browsing by Subject "wild type"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Adenosine A2A receptors intrinsically regulate CD8+ T cells in the tumor microenvironment(American Association for Cancer Research Inc., 2014) Cekic, C.; Linden J.Adenosine A2A receptor (A2AR) blockade enhances innate and adaptive immune responses. However, mouse genetic studies have shown that A2AR deletion does not inhibit the growth of all tumor types. In the current study, we showed that growth rates for ectopic melanoma and bladder tumors are increased in Adora2a-/- mice within 2 weeks of tumor inoculation. A2AR deletion in the host reduced numbers of CD8+ T cells and effector-memory differentiation of all T cells. To examine intrinsic functions in T cells, we generated mice harboring a T-cell-specific deletion of A2AR. In this host strain, tumor-bearing mice displayed increased growth of ectopic melanomas, decreased numbers of tumor-associated T cells, reduced effector-memory differentiation, and reduced antiapoptotic IL7Rα (CD127) expression on antigen-experienced cells. Intratumoral pharmacologic blockade similarly reduced CD8+ T-cell density within tumors in wild-type hosts. We found that A2AR-proficient CD8+ T cells specific for melanoma cells displayed a relative survival advantage in tumors. Thus, abrogating A2AR signaling appeared to reduce IL7R expression, survival, and differentiation of T cells in the tumor microenvironment. One implication of these results is that the antitumor effects of A2AR blockade that can be mediated by activation of cytotoxic T cells may be overcome in some tumor microenvironments as a result of impaired T-cell maintenance and effector-memory differentiation. Thus, our findings imply that the efficacious application of A2AR inhibitors for cancer immunotherapy may require careful dose optimization to prevent activation-induced T-cell death in tumors. ©2014 AACR.Item Open Access Common telomerase reverse transcriptase promoter mutations in hepatocellular carcinomas from different geographical locations(WJG Press, 2015) Cevik, D.; Yildiz G.; Ozturk, M.AIM: To determine the mutation status of human telomerase reverse transcriptase gene (TERT ) promoter region in hepatocellular carcinoma (HCC) from different geographical regions. METHODS: We analyzed the genomic DNA sequences of 59 HCC samples comprising 15 cell lines and 44 primary tumors, collected from patients living in Asia, Europe and Africa. We amplified a 474 bp DNA fragment of the promoter region of TERT gene including the 1295228 and 1295250 sequence of chromosome 5 by using PCR. Amplicons were then sequenced by Sanger technique and the sequence data were analyzed with by using DNADynamo software in comparison with wild type TERT gene sequence as a reference. RESULTS: The TERT mutations were found highly frequent in HCC. Eight of the fifteen tested cell lines displayed C228T mutation, and one had C250T mutation with a mutation frequency up to 60%. All of the mutations were heterozygous and mutually exclusive. Ten out of forty-four tumors displayed C228T mutation, and additional five tumors had C250T mutation providing evidence for mutation frequency of 34% in primary tumors. Considering the geographic origins of HCC tumors tested, TERT promoter mutation frequencies were higher in African (53%), when compared to non-African (24%) tumors (P = 0.056). There was also a weak inverse correlation between TERT promoter mutations and murine double minute 2 single nucleotide polymorphism 309 TG polymorphism (P = 0.058). Mutation frequency was nearly two times higher in established HCC cell lines (60%) compared to the primary tumors (34%). CONCLUSION: TERT promoter is one of most frequent mutational targets in liver cancer, and hepatocellular carcinogenesis is highly associated with the loss of telomere-dependent cellular senescence control. © The Author(s) 2015.Item Open Access Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii(2012) Cakmak, T.; Angun P.; Demiray, Y.E.; Ozkan, A.D.; Elibol, Z.; Tekinay, T.Biodiesel production from microalgae is a promising approach for energy production; however, high cost of its process limits the use of microalgal biodiesel. Increasing the levels of triacylglycerol (TAG) levels, which is used as a biodiesel feedstock, in microalgae has been achieved mainly by nitrogen starvation. In this study, we compared effects of sulfur (S) and nitrogen (N) starvation on TAG accumulation and related parameters in wild-type Chlamydomonas reinhardtii CC-124 mt(-) and CC-125 mt(+) strains. Cell division was interrupted, protein and chlorophyll levels rapidly declined while cell volume, total neutral lipid, carotenoid, and carbohydrate content increased in response to nutrient starvation. Cytosolic lipid droplets in microalgae under nutrient starvation were monitored by three-dimensional confocal laser imaging of live cells. Infrared spectroscopy results showed that relative TAG, oligosaccharide and polysaccharide levels increased rapidly in response to nutrient starvation, especially S starvation. Both strains exhibited similar levels of regulation responses under mineral deficiency, however, the degree of their responses were significantly different, which emphasizes the importance of mating type on the physiological response of algae. Neutral lipid, TAG, and carbohydrate levels reached their peak values following 4 days of N or S starvation. Therefore, 4 days of N or S starvation provides an excellent way of increasing TAG content. Although increase in these parameters was followed by a subsequent decline in N-starved strains after 4 days, this decline was not observed in S-starved ones, which shows that S starvation is a better way of increasing TAG production of C. reinhardtii than N starvation. © 2012 Wiley Periodicals, Inc.Item Open Access Structures and free energy landscapes of the wild-type and A30P mutant-type α-synuclein proteins with dynamics(2013) Wise-Scira O.; Aloglu, A.K.; Dunn, A.; Sakallioglu I.T.; Coskuner O.The genetic missense A30P mutation of the wild-type α-synuclein protein results in the replacement of the 30th amino acid residue from alanine (Ala) to proline (Pro) and was initially found in the members of a German family who developed Parkinson's disease. Even though the structures of these proteins have been measured before, detailed understanding about the structures and their relationships with free energy landscapes is lacking, which is of interest to provide insights into the pathogenic mechanism of Parkinson's disease. We report the secondary and tertiary structures and conformational free energy landscapes of the wild-type and A30P mutant-type α-synuclein proteins in an aqueous solution environment via extensive parallel tempering molecular dynamics simulations along with thermodynamic calculations. In addition, we present the residual secondary structure component transition stabilities at the atomic level with dynamics in terms of free energy change calculations using a new strategy that we reported most recently. Our studies yield new interesting results; for instance, we find that the A30P mutation has local as well as long-range effects on the structural properties of the wild-type α-synuclein protein. The helical content at Ala18-Gly31 is less prominent in comparison to the wild-type α-synuclein protein. The β-sheet structure abundance decreases in the N-terminal region upon A30P mutation of the wild-type α-synuclein, whereas the NAC and C-terminal regions possess larger tendencies for β-sheet structure formation. Long-range intramolecular protein interactions are less abundant upon A30P mutation, especially between the NAC and C-terminal regions, which is linked to the less compact and less stable structures of the A30P mutant-type rather than the wild-type α-synuclein protein. Results including the usage of our new strategy for secondary structure transition stabilities show that the A30P mutant-type α-synuclein tendency toward aggregation is higher than the wild-type α-synuclein but we also find that the C-terminal and NAC regions of the A30P mutant-type α-synuclein are reactive toward fibrillzation and aggregation based on atomic level studies with dynamics in an aqueous solution environment. Therefore, we propose that small molecules or drugs blocking the specific residues, which we report herein, located in the NAC- and C-terminal regions of the A30P mutant-type α-synuclein protein might help to reduce the toxicity of the A30P mutant-type α-synuclein protein. © 2013 American Chemical Society.Item Open Access Structures of the E46K mutant-type α-synuclein protein and impact of E46K mutation on the structures of the wild-type α-synuclein protein(2013) Wise-Scira O.; Dunn, A.; Aloglu, A.K.; Sakallioglu I.T.; Coskuner O.The E46K genetic missense mutation of the wild-type α-synuclein protein was recently identified in a family of Spanish origin with hereditary Parkinson's disease. Detailed understanding of the structures of the monomeric E46K mutant-type α-synuclein protein as well as the impact of the E46K missense mutation on the conformations and free energy landscapes of the wild-type α-synuclein are required for gaining insights into the pathogenic mechanism of Parkinson's disease. In this study, we use extensive parallel tempering molecular dynamics simulations along with thermodynamic calculations to assess the secondary and tertiary structural properties as well as the conformational preferences of the monomeric wild-type and E46K mutant-type α-synuclein proteins in an aqueous solution environment. We also present the residual secondary structure component conversion stabilities with dynamics using a theoretical strategy, which we most recently developed. To the best of our knowledge, this study presents the first detailed comparison of the structural and thermodynamic properties of the wild-type and E46K mutant-type α-synuclein proteins in an aqueous solution environment at the atomic level with dynamics. We find that the E46K mutation results not only in local but also in long-range changes in the structural properties of the wild-type α-synuclein protein. The mutation site shows a significant decrease in helical content as well as a large increase in β-sheet structure formation upon E46K mutation. In addition, the β-sheet content of the C-terminal region increases significantly in the E46K mutant-type αS in comparison to the wild-type αS. Our theoretical strategy developed to assess the thermodynamic preference of secondary structure transitions indicates that this shift in secondary structure is the result of a decrease in the thermodynamic preference of turn to helix conversions while the coil to β-sheet preference increases for these residues. Long-range intramolecular protein interactions of the C-terminal with the N-terminal and NAC regions increase upon E46K mutation, resulting in more compact structures for the E46K mutant-type rather than wild-type αS. However, the E46K mutant-type αS structures are less stable than the wild-type αS. Overall, our results show that the E46K mutant-type αS has a higher propensity to aggregate than the wild-type αS and that the N-terminal and C-terminal regions are reactive toward fibrillization and aggregation upon E46K mutation and we explain the associated reasons based on the structural properties herein. Small molecules or drugs that can block the specific residues forming abundant β-sheet structure, which we report here, might help to reduce the reactivity of these intrinsically disordered fibrillogenic proteins toward aggregation and their toxicity. © 2013 American Chemical Society.