Browsing by Subject "underwater acoustic (UWA) communication"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Implementation of an OFDM based underwater acoustic modem(2011) Demirörs, EmrecanIn this thesis we designed and implemented an underwater acoustic (UWA) communication system employing multicarrier modulation in the form of orthogonal frequency division multiplexing (OFDM). UWA communication became more popular as there has been a growing interest in transmitting real-time data, such as video and sonar images. There are many applications where these transmissions are used. These applications are underwater wireless sensor networks(UWSN) and unmanned underwater vehicles (UUVs) for military and scientific purposes. Therefore, building an efficient UWA communication system which has a high data rate can improve these applications’ performance signifi- cantly. Currently, many underwater communication systems use single carrier modulation which have limited data rate due to complexity of their receivers, as frequency selectivity of the channel increases when the symbol rate increases, so we preferred to use multicarrier modulation in UWA communication in order to increase data rate of our system. In this thesis, we considered a system that uses zero-padded (ZP) OFDM modulation. Based on ZP-OFDM, we used a receiver model that performs pilot-tone based channel estimation, carrier frequency offset compensation based on least squares (LS) fitting error or null subcarriers if they occur and data demodulation for each OFDM block individually. We used MATLAB environment for implementing our system. The MATLAB scripts generate a data burst that contains OFDM blocks, and then it is transmitted to the hardware from a laptop by using a Data Acquisition (DAQ) Card. At the other side of the system, the receiver laptop gets the data by using a DAQ Card. As the data is received, MATLAB scripts are used for demodulating it. As we built our system, we performed underwater experiments at Bilkent Lake Facility to investigate its performance in a real UWA channel. In our test, a data rate of 13.92 kbps has been achieved with quadrature phase shift keying (QPSK) modulation while the bit-error-rate (BER) was less then 9x10−2 without using any coding.Item Open Access Underwater acoustic modem using OFDM(2012) Yüksel, Mine MerveThis thesis is about design, simulation and testing of an underwater acoustic modem using OFDM. The thesis work combines a theoretical part, whose objective is to understand the appropriate techniques to deal with the characteristics of the targeted channel, simulations and a practical part regarding the system deployment and experimental tests. There has been a great growing interest in transmitting real-time data and video. Unmanned underwater vehicles (UUVs) for military and scientific applications have become important. Building distributed and scalable underwater wireless sensor networks (UWSN) that will bring significant advantages and benefits to underwater applications, such as ocean observation for scientific exploration, commercial exploitation, coastline protection and target detection in military events has been in the scope of researchers. Based on these, designing a concrete system with high data rate will benefit many underwater acoustic (UWA) applications. The existing systems in literature use single carrier transmission and rely on linear or non-linear equalization techniques to suppress inter-symbol interference (ISI), however this requires complex equalizers and results in low data rates. Therefore we concentrate on multicarrier modulation. In this thesis ZP-OFDM (Zero Padded-Orthogonal Frequency Division Multiplexing) receiver is built, where CFO (Carrier Frequency Offset) compensation, pilot-tone based channel estimation, and data demodulation are carried out on the basis of each OFDM block. The implemented OFDM system has been developed in MATLAB. MATLAB scripts generate a data burst that contained OFDM blocks, and then they are transmitted to the hardware from a laptop by using a Data Acquisition (DAQ) Card. At the other side of the system, the receiver laptop gets the data by using a DAQ Card. As the data is received, MATLAB scripts are demodulated and data is detected. Simulations aim to provide correct implementation of all the algorithms by coupling the generated OFDM signal to a channel using Bellhop underwater channel model and noise addition algorithm, that artificially introduces some of the real channel effects into the signal. The method is tested in a shallow-water experiment at Bilkent Lake. Over a bandwidth of 12 kHz, the data rate is 13.92 kb/s with QPSK modulation, when the number of subcarriers was 1024. Bit-error-rate (BER) is less than 9x10−2 without any coding.