Browsing by Subject "time of flight mass spectrometry"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Cyclodextrin functionalized poly(methyl methacrylate) (PMMA) electrospun nanofibers for organic vapors waste treatment(Elsevier BV, 2010) Uyar, Tamer; Havelund, R.; Nur, Y.; Balan, A.; Hacaloglu, J.; Toppare, L.; Besenbacher, F.; Kingshott, P.Poly(methyl methacrylate) (PMMA) nanofibers containing the inclusion complex forming betacyclodextrin (_-CD) were successfully produced by means of electrospinning in order to develop functional nanofibrous webs for organic vapor waste treatment. Electrospinning of uniform PMMA nanofibers containing different loadings of _-CD (10%, 25% and 50% (w/w)) was achieved. The surface sensitive spectroscopic techniques; X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) showed that some of the _-CD molecules are present on the surface of the PMMA nanofibers, which is essential for the trapping of organic vapors by inclusion complexation. Direct pyrolysis mass spectrometry (DP-MS) studies showed that PMMA nanowebs containing _-CD can entrap organic vapors such as aniline, styrene and toluene from the surroundings due to inclusion complexation with _-CD that is present on the fiber surface. Our study showed that electrospun nanowebs functionalized with cyclodextrinsmayhave the potential to be used as molecular filters and/or nanofilters for the treatment of organic vapor waste and air filtration purposes.Item Open Access The formation and characterization of cyclodextrin functionalized polystyrene nanofibers produced by electrospinning(2009) Uyar, Tamer; Havelund, R.; Hacaloglu J.; Zhou X.; Besenbacher F.; Kingshott P.Polystyrene (PS) nanofibers containing the inclusion complex forming beta-cyclodextrin (β-CD) were successfully produced by electrospinning aimed at developing functional fibrous nanowebs. By optimization of the electrospinning parameters, which included varying the relative concentration of PS and β-CD in the solutions, bead-free fibers were produced. Homogeneous solutions of β-CD and PS in dimethylformamide (DMF) were used with concentrations of PS varying from 10% to 25% (w/v, with respect to DMF), and β-CD concentrations of 1% to 50% (w/w, with respect to PS). The presence of β-CD facilitated the production of bead-free PS fibers even from lower polymer concentrations as a result of the higher conductivity of the PS/CD solutions. The morphology and the production of bead-free PS/CD fibers were highly dependent on the β-CD contents. Transmission electron microscope (TEM) and atomic force microscope (AFM) images showed that incorporation of β-CD yielded PS fibers with rougher surfaces. Thermogravimetric analysis (TGA) and direct insertion probe pyrolysis mass spectroscopy (DP-MS) results confirmed the presence of β-CD in the PS fibers. X-ray diffraction (XRD) spectra of the fibers indicated that the β-CD molecules are distributed within the PS matrix without any phase separated crystalline aggregates up to 40% (w/w) β-CD loading. Furthermore, chemical analyses by Fourier transform infrared (FTIR) spectroscopy studies confirm that β-CD molecules are located within the PS fiber matrix. Finally, preliminary investigations using x-ray photoelectron spectroscopy (XPS) and time-of-flight static secondary ion mass spectrometry (ToF-static-SIMS) show the presence of the cyclodextrin molecules in the outer molecular layers of the fiber surfaces. The XPS and ToF-SIMS findings indicate that cyclodextrin functionalized PS webs would have the potential to be used as molecular filters and/or nanofilters for the purposes of filtration/purification/separation owing to surface associated β-CD molecules which have inclusion complexation capability. © 2009 IOP Publishing Ltd.Item Open Access Neutral particle mass spectrometry with nanomechanical systems(Nature Publishing Group, 2015) Sage, E.; Brenac, A.; Alava, T.; Morel, R.; Dupré, C.; Hanay, M.S.; Roukes, M.L.; Duraffourg L.; Masselon, C.; Hentz, S.Current approaches to mass spectrometry (MS) require ionization of the analytes of interest. For high-mass species, the resulting charge state distribution can be complex and difficult to interpret correctly. Here, using a setup comprising both conventional time-of-flight MS (TOF-MS) and nano-electromechanical systems-based MS (NEMS-MS) in situ, we show directly that NEMS-MS analysis is insensitive to charge state: the spectrum consists of a single peak whatever the speciesa' charge state, making it significantly clearer than existing MS analysis. In subsequent tests, all the charged particles are electrostatically removed from the beam, and unlike TOF-MS, NEMS-MS can still measure masses. This demonstrates the possibility to measure mass spectra for neutral particles. Thus, it is possible to envisage MS-based studies of analytes that are incompatible with current ionization techniques and the way is now open for the development of cutting-edge system architectures with unique analytical capability. © 2015 Macmillan Publishers Limited.