Browsing by Subject "synapse"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access De novo insertions and deletions of predominantly paternal origin are associated with autism spectrum disorder(Elsevier, 2014) Dong, S.; Walker, M.F.; Carriero, N.J.; DiCola, M.; Willsey, A.; Ye, A.Y.; Waqar, Z.; Gonzalez L.E.; Overton J.D.; Frahm, S.; Keaney J.F.; III, Teran, N.A.; Dea J.; Mandell J.D.; HusBal V.; Sullivan, C.A.; DiLullo, N.M.; Khalil, R.O.; Gockley J.; Yuksel, Z.; Sertel, S.M.; Ercan-Sencicek, A.G.; Gupta, A.R.; Mane, S.M.; Sheldon, M.; Brooks, A.I.; Roeder, K.; Devlin, B.; State, M.W.; Wei L.; Sanders, S.J.Whole-exome sequencing (WES) studies have demonstrated the contribution of de novo loss-of-function single-nucleotide variants (SNVs) to autism spectrum disorder (ASD). However, challenges in the reliable detection of de novo insertions and deletions (indels) have limited inclusion of these variants in prior analyses. By applying a robust indel detection method to WES data from 787 ASD families (2,963 individuals), we demonstrate that de novo frameshift indels contribute to ASD risk (OR= 1.6; 95% CI= 1.0-2.7; p= 0.03), are more common in female probands (p= 0.02), are enriched among genes encoding FMRP targets (p= 6× 10-9), and arise predominantly on the paternal chromosome (p< 0.001). On the basis of mutation rates in probands versus unaffected siblings, we conclude that de novo frameshift indels contribute to risk in approximately 3% of individuals with ASD. Finally, by observing clustering of mutations in unrelated probands, we uncover two ASD-associated genes: KMT2E (MLL5), a chromatin regulator, and RIMS1, a regulator of synaptic vesicle release. © 2014 The Authors.Item Open Access Systematic discovery of Rab GTPases with synaptic functions in Drosophila(2011) Chan, C.-C.; Scoggin, S.; Wang, D.; Cherry, S.; Dembo, T.; Greenberg, B.; Jin, E.J.; Kuey, C.; Lopez, A.; Mehta, S.Q.; Perkins, T.J.; Brankatschk, M.; Rothenfluh, A.; Buszczak, M.; Hiesinger P.R.Background: Neurons require highly specialized intracellular membrane trafficking, especially at synapses. Rab GTPases are considered master regulators of membrane trafficking in all cells, and only very few Rabs have known neuron-specific functions. Here, we present the first systematic characterization of neuronal expression, subcellular localization, and function of Rab GTPases in an organism with a brain. Results: We report the surprising discovery that half of all Drosophila Rabs function specifically or predominantly in distinct subsets of neurons in the brain. Furthermore, functional profiling of the GTP/GDP-bound states reveals that these neuronal Rabs are almost exclusively active at synapses and the majority of these synaptic Rabs specifically mark synaptic recycling endosomal compartments. Our profiling strategy is based on Gal4 knockins in large genomic fragments that are additionally designed to generate mutants by ends-out homologous recombination. We generated 36 large genomic targeting vectors and transgenic rab-Gal4 fly strains for 25 rab genes. Proof-of-principle knockout of the synaptic rab27 reveals a sleep phenotype that matches its cell-specific expression. Conclusions: Our findings suggest that up to half of all Drosophila Rabs exert specialized synaptic functions. The tools presented here allow systematic functional studies of these Rabs and provide a method that is applicable to any large gene family in Drosophila. © 2011 Elsevier Ltd. All rights reserved.