BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "solar cells"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Enhanced Performance of Nanowire-Based All-TiO2 Solar Cells using Subnanometer-Thick Atomic Layer Deposited ZnO Embedded Layer
    (Pergamon Press, 2015) Ghobadi, A.; Yavuz, H. I.; Ulusoy, T. G.; Icli, K. C.; Ozenbas, M.; Okyay, Ali Kemal
    In this paper, the effect of angstrom-thick atomic layer deposited (ALD) ZnO embedded layer on photovoltaic (PV) performance of Nanowire-Based All-TiO2 solar cells has been systematically investigated. Our results indicate that by varying the thickness of ZnO layer the efficiency of the solar cell can be significantly changed. It is shown that the efficiency has its maximum for optimal thickness of 1 ALD cycle in which this ultrathin ZnO layer improves device performance through passivation of surface traps without hampering injection efficiency of photogenerated electrons. The mechanisms contributing to this unprecedented change in PV performance of the cell have been scrutinized and discussed.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Semiconductor quantum dots driven by radiative and nonradiative energy transfer for high-efficiency hybrid LEDs and photovoltaics
    (2011) Güzeltürk, Burak
    Today the world energy demand has overtaken unprecedented consumption levels, which have never been reached before in the history of the world. The current trends indicate that the increasing demand for energy will tend to continue at an increasing pace in the coming decades due to worldwide globalization and industrialization. Scientific community is challenged to devise and develop fundamentally new technologies to cope with the energy problem of the world. To this end, optoelectronics can offer several solutions for energy efficiency both in light harvesting and generation. In this thesis, we propose and demonstrate enhanced light generation and harvesting by utilizing both radiative and nonradiative energy transfer capabilities of semiconductor nanocrystal quantum dots, which are profited for the development of novel hybrid devices combining superior properties of the constituent material systems. One of our proposals in this thesis relies on grafting nanostructured light emitting diodes with nanocrystal quantum dots to realize highly efficient color conversion. To the best of our knowledge, we report the highest nonradiative energy transfer efficiency of 83% obtained at room temperature for this type of colorconversion light emitting diodes owing to the architectural superiorities of their nanostructure. In another proposal, we addressed charge injection problems of electrically pumped nanocrystal-based light emitting diodes. We proposed and demonstrated the utilization of novel excitonic injection scheme to drive such LEDs of nanocrystals, which may become prominent especially for the display technology. Finally, we proposed and implemented quantum dot downconversion layers in nanostructured silicon solar cells to benefit the advantages of their nanostructured architecture. We have shown that nanostructured silicon solar cells lead to stronger enhancements compared to the planar counterparts.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback