Browsing by Subject "quantum dots"
Now showing 1 - 9 of 9
- Results Per Page
- Sort Options
Item Open Access Computational study of excitons and biexcitons in semiconductor core/shell nanocrystals of type I and type II(2013) Yerli, OzanIn this thesis, we studied electronic structure and optical properties of Type-I, Type-II, and quasi Type-II semiconductor nanocrystals (also known as colloidal quantum dots). For a parametric study, we developed quantum mechanical models and solved them using both analytical and numerical techniques. The simulation results were compared to the experimental findings. We showed that charge carrier localization at di↵erent spatial locations could be tuned by controlling size parameters of the core and shell. While tuning charge localization, we also predicted photoluminescence peaks of these core/shell nanocrystals using our theoretical and numerical calculations. We demonstrated that Type-II nanocrystals exhibit di↵erent tuning trends compared to the Type-I ones. We also investigated biexcitonic properties of nanocrystals using quantum mechanical simulations, which are important especially in lasing applications. We showed that two-photon absorption mechanism can be tuned by changing the core and shell size in quantum dots. We calculated at which core and shell sizes biexcitons in quantum dots show attractive or repulsive interaction. The computational studies presented in this thesis played an important role in the experimental demonstrations and understanding of controlling excitonic features of core/shell nanocrystals.Item Open Access Highly flexible, full-color, top-emitting quantum dot light-emitting diode tapes(IEEE, 2013) Yang X.; Mutlugün, Evren; Gao, Y.; Zhao, Y.; Tan, S.T.; Sun X.W.; Demir, Hilmi VolkanWe report flexible tapes of high-performance, top-emitting, quantum dot based, light-emitting diodes (QLEDs) with multicolor emission, actively working even when flexed. The resulting QLED tapes reach a high peak luminance level of 19,265 cd/m2. © 2013 IEEE.Item Open Access Localized plasmon-coupled semiconductor nanocrystal emitters for innovative device applications(2007) Soğancı, İbrahim MuratQuantum confinement allows for the development of novel luminescent materials such as colloidal semiconductor quantum dots for a variety of photonic applications spanning from biomedical labeling to white light generation. However, such device applications require efficient photoluminescence. To this end, in this thesis we investigate the spontaneous emission characteristics of semiconductor nanocrystal emitters under different conditions and their enhancement and controlled modification via plasmonic resonance coupling, placing metallic nanoparticles in their proximity, for innovative device applications. We first present our theoretical and experimental work on the optical characterization of nanocyrstals (e.g., CdSe, CdS, and CdSe/ZnS) including absorption/photoluminescence, time-resolved luminescence, and excitation spectra measurements. Here we demonstrate very strong electromodulation (up to 90%) of photoluminescence and absorption of such nanocrystals (nanodots and nanorods) for optical modulator applications. Second, we present our electromagnetic modeling on the optical response of metal nanoparticles using finite-difference-time-domain method. For the first time, using localized plasmons of metal nanoisland films (nano-silver) carefully spectrally and spatially tuned for optimal coupling conditions, we report very significant controlled modifications of nanocrystal emission including the peak emission wavelength shift (by 14nm), emission linewidth reduction (by 10nm with 22% FWHM reduction), photoluminescence intensity enhancement (15.1- and 21.6-fold compared to the control groups of the same nanocrystals with no plasmonic coupling and those with identical nano-silver but no dielectric spacer in the case of non-radiative energy transfer, respectively), and selectable peaking of surface-state emission at desired wavelengths. Such localized plasmonic engineering of nanocrystal emitters opens new possibilities for our lightemitting and photovoltaic devices.Item Open Access Low dimensional structures for optical and electrical applications(2008) Akça, İmranLow dimensional structures such as quantum dots have been particularly attractive because of their fundamental physical properties and their potential applications in various devices in integrated optics and microelectronics. This thesis presents optical and electrical applications of low dimensional structures. For this purpose we have studied silicon and germanium nanocrystals for flash memory applications and InAs quantum dots for optical modulators. As a quantum dot, nanocrystals can be used as storage media for carriers in flash memories. Performance of a nanocrystal memory device can be expressed in terms of write/erase speed, carrier retention time and cycling durability. Charge and discharge dynamics of PECVD grown nanocrystals were studied. Electron and hole charge and discharge currents were observed to differ significantly and strongly depend on annealing conditions chosen for the formation of nanocrystals. Our experimental results revealed that, discharge currents were dominated by the interface layer acting as a quantum well for holes and route for direct tunneling for electrons. On the other hand, possibility of obtaining quantum dots with enhanced electro-optic and/or electro-absorption coefficients makes them attractive for use in light modulation. Therefore, waveguides of multilayer InAs quantum dots were studied. Electro-optic measurements were conducted at 1.5 µm and clear Fabry-Perot resonances were obtained. The voltage dependent Fabry-Perot measurements revealed that 6 V was sufficient for full on/off modulation. Electroabsorption measurements were conducted at both 1.3 and 1.5 µm. Since the structure lases at 1285 nm, high absorption values at 1309 nm were obtained. The absorption spectrum of the samples was also studied under applied electric field. Absorption spectra of all samples shift to lower photon energies with increasing electric field.Item Open Access Multi exciton generation and recombination of semiconductor nanocrystals : fundamental understanding and applications(2013) Cihan, Ahmet FatihSemiconductor nanocrystal quantum dots (QDs) have been found to be very promising for important application areas in optoelectronics and photonics. Their energy band-gap tunability, high performance band-edge emission, decent temperature stabilities, and easy material processing make the QDs attractive for these applications ranging from photovoltaic devices to photodetectors and lasers to light-emitting diodes. For these QDs, the concepts of multi exciton generation (MEG) and recombination (MER) have recently been shown to be important especially because they possibly enable efficiency levels exceeding unity using these QDs in various device configurations. However, understanding multi exciton kinetics in QD solids has been hindered by the confusion of MER with the recombination of carriers in charged QDs. This understanding lacks to date and the spectral-temporal aspects of MER still remain unresolved in solid QD ensembles. In this thesis, we reveal the spectral-temporal behavior of biexcitons (BXs) in the presence of photocharging using near-unity quantum yield core/shell CdSe/CdS QDs. The spectral behavior of BXs and that of excitons (Xs) were obtained for the QD samples with different core sizes, exhibiting the strength-tunability of the X-X interaction energy in these QDs. The extraction of spectrally resolved X, BX, and trion kinetics, which would be spectrally unresolved using conventional approaches, is enabled by our approach introducing the integrated time-resolved fluorescence. Besides the fundamental understanding of MEG and MER concepts, we also explored the possibility of utilizing multi excitons in these QDs for optical gain. In this part of the thesis, tunable, high performance, two-photon absorption (TPA) based amplified spontaneous emission (ASE) from the same QDs is presented. Here, for the first time, in addition to the absolute spectral tuning of the ASE, on the single material system of CdSe/CdS, the relative spectral tuning of ASE peak with respect to spontaneous emission was demonstrated. With the core and shell size adjustments, it was shown that Coulombic X-X interactions can be tuned to be either attractive leading to the red-shifted ASE peak or repulsive leading to the blue-shifted ASE peak and that non-shifting ASE can be achieved with the right core-shell combinations. It was further found here that it is possible to obtain ASE at a specific wavelength from both Type-I-like and Type-II-like CdSe/CdS QDs. In addition to the CdSe/CdS QDs, we showed ASE and Type-tunability features on CdSe/CdS nanorods (NRs), which are particularly promising with their extremely high TPA cross-sections and independent emission/absorption tunabilities. In the final part of the thesis, we report the observation of MEG on CdHgTe QDs, for the first time in the literature, and a novel application of MEG concept in a photosensor device, one of the first examples of real-life photosensing application of MEG concept. We believe that the results provided in this thesis do not only contribute to the fundamental understanding of MEG and MER concepts in the QDs, but also pave the way for the utilization of these concepts in the QD-based lasers, photodetectors and photovoltaic devices.Item Open Access Novel nanocrystal-integrated LEDs utilizing radiative and nonradiative energy transfer for high-quality efficient light generation(2011) Nizamoğlu, SedatTo combat environmental issues escalating with the increasing carbon footprint, combined with the energy problem of limited resources, innovating fundamentally new ways of raising energy efficiency and level of energy utilization is essential to our energy future. Today, to this end, achieving lighting efficiency is an important key because artificial lighting consumes about 19% of total energy generation around the globe. There is a large room for improving lighting efficacy for potential carbon emission cut. However, the scientific challenge is to reach simultaneously high-quality photometric performance. To address these problems, we proposed, developed and demonstrated a new class of color-conversion light emitting diodes (LEDs) integrated with nanophosphors of colloidal quantum dots. The favorable properties of these semiconductor nanocrystal quantum dots, including size-tuneable and narrow-band emission with high photostability, have provided us with the ability of achieving highquality, efficient lighting. Via using custom-design combinations of such nanocrystal emitters, we have shown that targeted white luminescence spectra can be generated with desired high photometric performance, which is important for obtaining application-specific white LEDs, e.g., for indoors lighting, street lighting, and LED-TV backlighting. Furthermore, dipole-dipole coupling capability of these semiconductor nanocrystals has allowed us to realize novel device designs based on Förster-type nonradiative energy transfer. By mastering exciton-exciton interactions in color-conversion LEDs, we have demonstrated enhanced color conversion via recycling of trapped excitons and white light generation based on nonradiative pumping of nanocrystal quantum dots for color conversion. This research work has led to successful demonstrators of semiconductor nanocrystal quantum dots that photometrically outperform conventional rareearth phosphor powders in terms of color rendering, luminous efficacy of optical radiation, color temperature and scotopic/photopic ratio for the first time.Item Open Access Novel ultraviolet scintillators based on semiconductor quantum dot emitters for significantly enhanced photodetection and photovoltaics(2007) Mutlugün, EvrenSilicon photonics opens opportunities to realize optoelectronic devices directly on large-scale integrated electronics, leveraging advanced Si fabrication and computation capabilities. However, silicon is constrained in different aspects for use in optoelectronics. Such one limitation is observed in Si based photodetectors, cameras, and solar cells that exhibit very poor responsivity in the ultraviolet (UV) spectral range. Si CMOS photodetectors and CCD cameras cannot be operated in UV, despite the strong demand for UV detection and imaging in security applications. Also, although 95% of the photovoltaics market is dominated by Si based solar cells, silicon is not capable of using UV radiation of the solar spectrum for solar energy conversion, as required especially in space applications. In this thesis for the first time, we demonstrate novel UV scintillators made of semiconductor quantum dot emitters hybridized on Si detectors and cameras to detect and image in UV with significantly improved responsivity and on Si solar cells to generate electrical energy from UV radiation with significantly improved solar conversion efficiency. We present the device conception, design, fabrication, experimental characterization, and theoretical analysis of these UV nanocrystal scintillators. Integrating highly luminescent CdSe/ZnS core-shell nanocrystals, we demonstrate hybrid photodetectors that exhibit two-orders-of-magnitude peak enhancement in their responsivity. We also develop photovoltaic nanocrystal scintillators to enhance open-circuit voltage, short-circuit current, fill factor, and solar conversion efficiency in UV. Hybridizing CdSe/ZnS quantum dots on Si photovoltaic devices, we show that the solar conversion efficiency is doubled under white light illumination (Xe lamp). Such UV scintillator nanocrystals hold great promise to enable photodetection and imaging in UV and extend photovoltaic activity to UV.Item Open Access Semiconductor quantum dots driven by radiative and nonradiative energy transfer for high-efficiency hybrid LEDs and photovoltaics(2011) Güzeltürk, BurakToday the world energy demand has overtaken unprecedented consumption levels, which have never been reached before in the history of the world. The current trends indicate that the increasing demand for energy will tend to continue at an increasing pace in the coming decades due to worldwide globalization and industrialization. Scientific community is challenged to devise and develop fundamentally new technologies to cope with the energy problem of the world. To this end, optoelectronics can offer several solutions for energy efficiency both in light harvesting and generation. In this thesis, we propose and demonstrate enhanced light generation and harvesting by utilizing both radiative and nonradiative energy transfer capabilities of semiconductor nanocrystal quantum dots, which are profited for the development of novel hybrid devices combining superior properties of the constituent material systems. One of our proposals in this thesis relies on grafting nanostructured light emitting diodes with nanocrystal quantum dots to realize highly efficient color conversion. To the best of our knowledge, we report the highest nonradiative energy transfer efficiency of 83% obtained at room temperature for this type of colorconversion light emitting diodes owing to the architectural superiorities of their nanostructure. In another proposal, we addressed charge injection problems of electrically pumped nanocrystal-based light emitting diodes. We proposed and demonstrated the utilization of novel excitonic injection scheme to drive such LEDs of nanocrystals, which may become prominent especially for the display technology. Finally, we proposed and implemented quantum dot downconversion layers in nanostructured silicon solar cells to benefit the advantages of their nanostructured architecture. We have shown that nanostructured silicon solar cells lead to stronger enhancements compared to the planar counterparts.Item Open Access Targeted self-assembly of nanocrystal quantum dot emitters using smart peptide linkers on light emitting diodes(2008) Zengin, GülisSemiconductor nanocrystal quantum dots find several applications in nanotechnology. Particularly in device applications, such quantum dots are typically required to be assembled with specific distribution in space for enhanced functionality and placed at desired spatial locations on the device which commonly has several diverse material components. In conventional approaches, self-assembly of nanocrystals typically takes place nonspecifically without surface recognition of materials and cannot meet these requirements. To remedy these issues, we proposed and demonstrated uniform, controlled, and targeted self-assembly of quantum dot emitters on multi-material devices by using cross-specificity of genetically engineered peptides as smart linkers and achieved directed immobilization of these quantum dot emitters decorated with peptides only on the targeted specific regions of our color-conversion LEDs. Our peptide decorated quantum dots exhibited 270 times stronger photoluminescence intensity compared to their negative control groups.