Browsing by Subject "protein function"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Differential p21 expression after ionizing and UVC radiation in EBV-transformed lymphoblastoid cells(2000) Moyret-Lalle, C.; Lalle P.; Pedeux, R.; Guillot, C.; Martel, S.; Magaud J.-P.; Puisieux, A.; Ozturk, M.Responses to DNA-damaging agents appear to be coordinated by p53 through transcriptional activation of critical target genes. Among them, p21WAF1 encodes a protein preventing cells from entering S phase. It is not clear whether p53-mediated response varies depending on the type of DNA damage. Here, we have decided to compare the p53-mediated response of EBV-transformed lymphoblasts to ionizing radiation and UVC irradiation. We have shown that these cells respond to ionizing radiation by a cell cycle arrest as expected. Surprisingly they failed to do so after UVC treatment. Accordingly there was no significant induction of p21 protein in UVC exposed cells despite p53 accumulation. Using isogenic EBV-transformed lymphoblastoid cells expressing E6 protein of HPV18, we have demonstrated that there was no evidence of p53-dependent cell cycle arrest after UVC irradiation. These observations suggest that the p53-mediated response to UVC, in contrast to ionizing radiation, was compromised in EBV-transformed cells and might be cell type-dependent.Item Open Access GOPred: GO molecular function prediction by combined classifiers(2010) Saraç Ö.S.; Atalay V.; Cetin-Atalay, R.Functional protein annotation is an important matter for in vivo and in silico biology. Several computational methods have been proposed that make use of a wide range of features such as motifs, domains, homology, structure and physicochemical properties. There is no single method that performs best in all functional classification problems because information obtained using any of these features depends on the function to be assigned to the protein. In this study, we portray a novel approach that combines different methods to better represent protein function. First, we formulated the function annotation problem as a classification problem defined on 300 different Gene Ontology (GO) terms from molecular function aspect. We presented a method to form positive and negative training examples while taking into account the directed acyclic graph (DAG) structure and evidence codes of GO. We applied three different methods and their combinations. Results show that combining different methods improves prediction accuracy in most cases. The proposed method, GOPred, is available as an online computational annotation tool (http://kinaz.fen.bilkent.edu.tr/gopred). © 2010 Saraç et al.Item Open Access Mutation in TOR1AIP1 encoding LAP1B in a form of muscular dystrophy: A novel gene related to nuclear envelopathies(Elsevier Ltd, 2014) Kayman-Kurekci G.; Talim, B.; Korkusuz P.; Sayar, N.; Sarioglu, T.; Oncel I.; Sharafi P.; Gundesli H.; Balci-Hayta, B.; Purali, N.; Serdaroglu-Oflazer P.; Topaloglu H.; Dincer P.We performed genome-wide homozygosity mapping and mapped a novel myopathic phenotype to chromosomal region 1q25 in a consanguineous family with three affected individuals manifesting proximal and distal weakness and atrophy, rigid spine and contractures of the proximal and distal interphalangeal hand joints. Additionally, cardiomyopathy and respiratory involvement were noted. DNA sequencing of torsinA-interacting protein 1 (TOR1AIP1) gene encoding lamina-associated polypeptide 1B (LAP1B), showed a homozygous c.186delG mutation that causes a frameshift resulting in a premature stop codon (p.E62fsTer25). We observed that expression of LAP1B was absent in the patient skeletal muscle fibres. Ultrastructural examination showed intact sarcomeric organization but alterations of the nuclear envelope including nuclear fragmentation, chromatin bleb formation and naked chromatin. LAP1B is a type-2 integral membrane protein localized in the inner nuclear membrane that binds to both A- and B-type lamins, and is involved in the regulation of torsinA ATPase. Interestingly, luminal domain-like LAP1 (LULL1)-an endoplasmic reticulum-localized partner of torsinA-was overexpressed in the patient's muscle in the absence of LAP1B. Therefore, the findings suggest that LAP1 and LULL1 might have a compensatory effect on each other. This study expands the spectrum of genes associated with nuclear envelopathies and highlights the critical function for LAP1B in striated muscle. © 2014 Elsevier B.V.Item Open Access PATZ1 is a DNA damage-responsive transcription factor that inhibits p53 function(American Society for Microbiology, 2015) Keskin, N.; Deniz, E.; Eryilmaz J.; Un, M.; Batur, T.; Ersahin, T.; Atalay, R.C.; Sakaguchi, S.; Ellmeier W.; Erman, B.Insults to cellular health cause p53 protein accumulation, and loss of p53 function leads to tumorigenesis. Thus, p53 has to be tightly controlled. Here we report that the BTB/POZ domain transcription factor PATZ1 (MAZR), previously known for its transcriptional suppressor functions in T lymphocytes, is a crucial regulator of p53. The novel role of PATZ1 as an inhibitor of the p53 protein marks its gene as a proto-oncogene. PATZ1-deficient cells have reduced proliferative capacity, which we assessed by transcriptome sequencing (RNA-Seq) and real-time cell growth rate analysis. PATZ1 modifies the expression of p53 target genes associated with cell proliferation gene ontology terms. Moreover, PATZ1 regulates several genes involved in cellular adhesion and morphogenesis. Significantly, treatment with the DNA damage-inducing drug doxorubicin results in the loss of the PATZ1 transcription factor as p53 accumulates. We find that PATZ1 binds to p53 and inhibits p53-dependent transcription activation. We examine the mechanism of this functional inhibitory interaction and demonstrate that PATZ1 excludes p53 from DNA binding. This study documents PATZ1 as a novel player in the p53 pathway. © 2015, American Society for Microbiology.