Browsing by Subject "protein domain"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Herpes simplex virus 1 amplicon vector-mediated siRNA targeting epidermal growth factor receptor inhibits growth of human glioma cells in vivo(2005) Saydam O.; Glauser, D.L.; Heid I.; Turkeri G.; Hilbe, M.; Jacobs, A.H.; Ackermann, M.; Fraefel, C.In primary glioblastomas and other tumor types, the epidermal growth factor receptor (EGFR) is frequently observed with alterations, such as amplification, structural rearrangements, or overexpression of the gene, suggesting an important role in glial tumorigenesis and progression. In this study, we investigated whether posttranscriptional gene silencing by vector-mediated RNAi to inhibit EGFR expression can reduce the growth of cultured human gli36 glioma cells. To "knock down" EGFR expression, we have created HSV-1-based amplicons that contain the RNA polymerase III-dependent H1 promoter to express double-stranded hairpin RNA directed against EGFR at two different locations (pHSVsiEGFR I and pHSVsiEGFR II). We demonstrate that both pHSVsiEGFR I and pHSVsiEGFR II mediated knock-down of transiently transfected full-length EGFR or endogenous EGFR in a dose-dependent manner. The knock-down of EGFR resulted in the growth inhibition of human glioblastoma (gli36-luc) cells both in culture and in athymic mice in vivo. Cell cycle analysis and annexin V staining revealed that siRNA-mediated suppression of EGFR induced apoptosis. Overall HSV-1 amplicons can mediate efficient and specific posttranscriptional gene silencing. Copyright © The American Society of Gene Therapy.Item Open Access Identification of novel neutralizing single-chain antibodies against vascular endothelial growth factor receptor 2(2011) Erdag, B.; Koray Balcioglu, B.; Ozdemir Bahadir, A.; Serhatli, M.; Kacar O.; Bahar, A.; Seker, U.O.S.; Akgun, E.; Ozkan, A.; Kilic, T.; Tamerler, C.; Baysal, K.Human vascular endothelial growth factor (VEGF) and its receptor (VEGFR-2/kinase domain receptor [KDR]) play a crucial role in angiogenesis, which makes the VEGFR-2 signaling pathway a major target for therapeutic applications. In this study, a single-chain antibody phage display library was constructed from spleen cells of mice immunized with recombinant human soluble extracellular VEGFR-2/KDR consisting of all seven extracellular domains (sKDR D1-7) to obtain antibodies that block VEGF binding to VEGFR-2. Two specific single-chain antibodies (KDR1.3 and KDR2.6) that recognized human VEGFR-2 were selected; diversity analysis of the clones was performed by BstNI fingerprinting and nucleotide sequencing. The single-chain variable fragments (scFvs) were expressed in soluble form and specificity of interactions between affinity purified scFvs and VEGFR-2 was confirmed by ELISA. Binding of the recombinant antibodies for VEGFR-2 receptors was investigated by surface plasmon resonance spectroscopy. In vitro cell culture assays showed that KDR1.3 and KDR2.6 scFvs significantly suppressed the mitogenic response of human umbilical vein endothelial cells to recombinant human VEGF 165 in a dose-dependent manner, and reduced VEGF-dependent cell proliferation by 60% and 40%, respectively. In vivo analysis of these recombinant antibodies in a rat cornea angiogenesis model revealed that both antibodies suppressed the development of new corneal vessels (p < 0.05). Overall, in vitro and in vivo results disclose strong interactions of KDR1.3 and KDR2.6 scFvs with VEGFR-2. These findings indicate that KDR1.3 and KDR2.6 scFvs are promising antiangiogenic therapeutic agents. © 2011 International Union of Biochemistry and Molecular Biology, Inc.Item Open Access Mutations in the very low-density lipoprotein receptor VLDLR cause cerebellar hypoplasia and quadrupedal locomotion in humans(National Academy of Sciences, 2008) Ozcelik, T.; Akarsu, N.; Uz, E.; Caglayan, S.; Gulsuner, S.; Onat, O. E.; Tan, M.; Tan, U.Quadrupedal gait in humans, also known as Unertan syndrome, is a rare phenotype associated with dysarthric speech, mental retardation, and varying degrees of cerebrocerebellar hypoplasia. Four large consanguineous kindreds from Turkey manifest this phenotype. In two families (A and D), shared homozygosity among affected relatives mapped the trait to a 1.3-Mb region of chromosome 9p24. This genomic region includes the VLDLR gene, which encodes the very low-density lipoprotein receptor, a component of the reelin signaling pathway involved in neuroblast migration in the cerebral cortex and cerebellum. Sequence analysis of VLDLR revealed nonsense mutation R257X in family A and single-nucleotide deletion c2339delT in family D. Both these mutations are predicted to lead to truncated proteins lacking transmembrane and signaling domains. In two other families (B and C), the phenotype is not linked to chromosome 9p. Our data indicate that mutations in VLDLR impair cerebrocerebellar function, conferring in these families a dramatic influence on gait, and that hereditary disorders associated with quadrupedal gait in humans are genetically heterogeneous.Item Open Access PATZ1 is a DNA damage-responsive transcription factor that inhibits p53 function(American Society for Microbiology, 2015) Keskin, N.; Deniz, E.; Eryilmaz J.; Un, M.; Batur, T.; Ersahin, T.; Atalay, R.C.; Sakaguchi, S.; Ellmeier W.; Erman, B.Insults to cellular health cause p53 protein accumulation, and loss of p53 function leads to tumorigenesis. Thus, p53 has to be tightly controlled. Here we report that the BTB/POZ domain transcription factor PATZ1 (MAZR), previously known for its transcriptional suppressor functions in T lymphocytes, is a crucial regulator of p53. The novel role of PATZ1 as an inhibitor of the p53 protein marks its gene as a proto-oncogene. PATZ1-deficient cells have reduced proliferative capacity, which we assessed by transcriptome sequencing (RNA-Seq) and real-time cell growth rate analysis. PATZ1 modifies the expression of p53 target genes associated with cell proliferation gene ontology terms. Moreover, PATZ1 regulates several genes involved in cellular adhesion and morphogenesis. Significantly, treatment with the DNA damage-inducing drug doxorubicin results in the loss of the PATZ1 transcription factor as p53 accumulates. We find that PATZ1 binds to p53 and inhibits p53-dependent transcription activation. We examine the mechanism of this functional inhibitory interaction and demonstrate that PATZ1 excludes p53 from DNA binding. This study documents PATZ1 as a novel player in the p53 pathway. © 2015, American Society for Microbiology.