BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "optimization problem"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    ItemOpen Access
    Novel solutions to classical signal processing problems in optimization framework
    (2014) Alp, Yaşar Kemal
    Novel approaches for three classical signal processing problems in optimization framework are proposed to provide further flexibility and performance improvement. In the first part, a new technique, which uses Hermite-Gaussian (HG) functions, is developed for analysis of signals, whose components have non-overlapping compact time-frequency supports. Once the support of each signal component is properly transformed, HG functions provide optimal representations. Conducted experiments show that proposed method provides reliable identification and extraction of signal components even under severe noise cases. In the second part, three different approaches are proposed for designing a set of orthogonal pulse shapes for ultra-wideband communication systems with wideband antennas. Each pulse shape is modelled as a linear combination of time shifted and scaled HG functions. By solving the constructed optimization problems, high energy pulse shapes, which maintain orthogonality at the receiver with desired timefrequency characteristics are obtained. Moreover, by showing that, derivatives of HG functions can be represented as a linear combination of HGs, a simple optimal correlating receiver structure is proposed. In the third part, two different methods for phase-only control of array antennas based on semidefinite modelling are proposed. First, antenna pattern design problem is formulated as a non-convex quadratically constraint quadratic problem (QCQP). Then, by relaxing the QCQP formulation, a convex semidefinite problem (SDP) is obtained. For moderate size arrays, a novel iterative rank refinement algorithm is proposed to achieve a rank-1 solution for the obtained SDP, which is the solution to the original QCQP formulation. For large arrays an alternating direction method of multipliers (ADMM) based solution is developed. Conducted experiments show that both methods provide effective phase settings, which generate beam patterns under highly flexible constraints.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy

We collect and process your personal information for the following purposes: Authentication, Preferences, Acknowledgement and Statistics.
To learn more, please read our
privacy policy.

Customize