BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "open reading frame"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    ItemOpen Access
    De novo insertions and deletions of predominantly paternal origin are associated with autism spectrum disorder
    (Elsevier, 2014) Dong, S.; Walker, M.F.; Carriero, N.J.; DiCola, M.; Willsey, A.; Ye, A.Y.; Waqar, Z.; Gonzalez L.E.; Overton J.D.; Frahm, S.; Keaney J.F.; III, Teran, N.A.; Dea J.; Mandell J.D.; HusBal V.; Sullivan, C.A.; DiLullo, N.M.; Khalil, R.O.; Gockley J.; Yuksel, Z.; Sertel, S.M.; Ercan-Sencicek, A.G.; Gupta, A.R.; Mane, S.M.; Sheldon, M.; Brooks, A.I.; Roeder, K.; Devlin, B.; State, M.W.; Wei L.; Sanders, S.J.
    Whole-exome sequencing (WES) studies have demonstrated the contribution of de novo loss-of-function single-nucleotide variants (SNVs) to autism spectrum disorder (ASD). However, challenges in the reliable detection of de novo insertions and deletions (indels) have limited inclusion of these variants in prior analyses. By applying a robust indel detection method to WES data from 787 ASD families (2,963 individuals), we demonstrate that de novo frameshift indels contribute to ASD risk (OR= 1.6; 95% CI= 1.0-2.7; p= 0.03), are more common in female probands (p= 0.02), are enriched among genes encoding FMRP targets (p= 6× 10-9), and arise predominantly on the paternal chromosome (p< 0.001). On the basis of mutation rates in probands versus unaffected siblings, we conclude that de novo frameshift indels contribute to risk in approximately 3% of individuals with ASD. Finally, by observing clustering of mutations in unrelated probands, we uncover two ASD-associated genes: KMT2E (MLL5), a chromatin regulator, and RIMS1, a regulator of synaptic vesicle release. © 2014 The Authors.
  • No Thumbnail Available
    ItemOpen Access
    Translational control of human p53 expression in yeast mediated by 5′-UTR-ORF structural interaction
    (2001) Mokdad-Gargouri, R.; Belhadj, K.; Gargouri, A.
    We have expressed human p53 cDNA in the yeast Saccharomyces cerevisiae and shown that the level of production and the lenght of the p53 protein depends on the presence of untranslated mRNA regions (UTRs). The expression of the ORF alone leads to a p53 protein of correct size (53 kDa) that accumulates to high levels, concomitantly with the presence of a small amount of a p40 protein (40 kDa). However, when either the entire 5′-UTR and a part of the 3′- or 5′-UTR alone is used, this leads to the production of small amounts of the 40 kDa truncated form only. The p40 protein corresponds to a truncated form of p53 at the C-terminal extremity since it reacts only with a monoclonal antibody recognising the N-terminal epitope. This effect on the amount and lenght of p53 protein had no correlation at the mRNA level, suggesting that translational control probably occurs through the 5′-UTR. We propose a model of structural interaction between this UTR and a part of the ORF mRNA for the regulation of p53 expression in this heterologous context.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy

We collect and process your personal information for the following purposes: Authentication, Preferences, Acknowledgement and Statistics.
To learn more, please read our
privacy policy.

Customize