Browsing by Subject "mTOR"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Age-dependent effects of short-term intermittent fasting and rapamycin treatment in Zebrafish (Danio Rerio) brain(2020-05) Birand, Ergül Dilan ÇelebiWorld populations are rapidly aging, and there is an urgent need to develop interventions that prevent or reverse age-related deterioration of health. To date, several approaches have been developed to extend health span. Among these, non genetic interventions have a higher potential to be utilized in translational studies. Caloric restriction (CR) and its pharmacological mimetic rapamycin, are two applications that have been shown to reliably extend life and health span across species. Despite a growing body of knowledge on how CR and rapamycin show their beneficial effects, their molecular mechanisms in the brain are not completely understood. Furthermore, most studies applied life-long CR, which is not suitable for translational research. To fill this gap, we investigated whether short-term durations of a CR approach intermittent fasting (IF) or rapamycin altered cellular and molecular markers of critical processes in the brain as well as metabolic parameters in the body. To assess how the age of the subjects affect the outcome of the treatments, we included young (6-10 months old) and old (26-31 months) zebrafish, which has recently emerged as a suitable model for gerontological research. Our results demonstrated that IF decreased whole-body glucose and cortisol levels, and increased neural progenitor marker DCAMKL1 in young and old animals. While this proliferation-promoting effect was preceded by suppression of mTOR activity in young, the upregulation of foxm1 and reduced autophagic flux as measured by LC3 II/LC3-I ratio were observed in old animals. Rapamycin, on the other hand, did not alter the metabolic parameters and induced entirely different molecular profiles at young and old ages. The most notable changes in young animals were reduced mTOR activity, LC3-II/LC3-I ratio and expression levels of a global proliferation marker PCNA. In old animals, the marker of activated astrocytes (i.e. GFAP) was decreased, indicating lower neuroinflammation, whereas excitatory-inhibitory balance as measured by PSD-95/Gephyrin ratio was shifted towards a more excitatory state. These results suggested that IF and rapamycin induced distinct metabolic profiles in young and old animals. Furthermore, there was an age dependent reciprocal relationship between proliferation and autophagy, which might be partly due to differential regulation of mTOR activity. Interestingly, rapamycin treatment was more effective in suppressing mTOR activity in young animals, and compared to IF. Nevertheless, these results suggested that rapamycin crosses the blood-brain barrier in zebrafish, and that short-term durations of IF or rapamycin were sufficient to alter the expression levels of key proteins involved in critical mechanisms in the brain.Item Open Access Functionally conserved effects of rapamycin exposure on zebrafish(Spandidos Publications, 2016-03) Sucularli, C.; Shehwana, H.; Kuscu, C.; Dungul, D. C.; Ozdag, H.; Konu, O.Mechanistic target of rapamycin (mTOR) is a conserved serine/threonine kinase important in cell proliferation, growth and protein translation. Rapamycin, a well-known anti-cancer agent and immunosuppressant drug, inhibits mTOR activity in different taxa including zebrafish. In the present study, the effect of rapamycin exposure on the transcriptome of a zebrafish fibroblast cell line, ZF4, was investigated. Microarray analysis demonstrated that rapamycin treatment modulated a large set of genes with varying functions including protein synthesis, assembly of mitochondrial and proteasomal machinery, cell cycle, metabolism and oxidative phosphorylation in ZF4 cells. A mild however, coordinated reduction in the expression of proteasomal and mitochondrial ribosomal subunits was detected, while the expression of numerous ribosomal subunits increased. Meta-analysis of heterogeneous mouse rapamycin microarray datasets enabled the comparison of zebrafish and mouse pathways modulated by rapamycin, using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology pathway analysis. The analyses demonstrated a high degree of functional conservation between zebrafish and mice in response to rapamycin. In addition, rapamycin treatment resulted in a marked dose-dependent reduction in body size and pigmentation in zebrafish embryos. The present study is the first, to the best of our knowledge, to evaluate the conservation of rapamycin-modulated functional pathways between zebrafish and mice, in addition to the dose-dependent growth curves of zebrafish embryos upon rapamycin exposure.Item Open Access Whole-genome and RNA sequencing reveal variation and transcriptomic coordination in the developing human prefrontal cortex(Elsevier, 2020-04) Werling, D. M.; Pochareddy, S.; Choi, J.; An, J.-Y.; Sheppard, B.; Peng, M.; Li, Z.; Dastmalchi, C.; Santpere, G.; Sousa, A. M. M.; Tebbenkamp, A. T. N.; Kaur, N.; Gulden, F. O.; Breen, M. S.; Liang, L.; Gilson, M. C.; Zhao, X.; Dong, S.; Klei, L.; Çiçek, A. Ercüment; Buxbaum, J. D.; Adle-Biassette, H.; Thomas, J.-L.; Aldinger, K. A.; O’Day, D. R.; Glass, I. A.; Zaitlen, N. A.; Talkowski, M. E.; Roeder, K.; State, M. W.; Devlin, B.; Sanders, S. J.; Sestan, N.Gene expression levels vary across developmental stage, cell type, and region in the brain. Genomic variants also contribute to the variation in expression, and some neuropsychiatric disorder loci may exert their effects through this mechanism. To investigate these relationships, we present BrainVar, a unique resource of paired whole-genome and bulk tissue RNA sequencing from the dorsolateral prefrontal cortex of 176 individuals across prenatal and postnatal development. Here we identify common variants that alter gene expression (expression quantitative trait loci [eQTLs]) constantly across development or predominantly during prenatal or postnatal stages. Both “constant” and “temporal-predominant” eQTLs are enriched for loci associated with neuropsychiatric traits and disorders and colocalize with specific variants. Expression levels of more than 12,000 genes rise or fall in a concerted late-fetal transition, with the transitional genes enriched for cell-type-specific genes and neuropsychiatric risk loci, underscoring the importance of cataloging developmental trajectories in understanding cortical physiology and pathology.