BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "k-nearest neighbor"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Human activity classification with miniature inertial sensors
    (2009) Tunçel, Orkun
    This thesis provides a comparative study on activity recognition using miniature inertial sensors (gyroscopes and accelerometers) and magnetometers worn on the human body. The classification methods used and compared in this study are: a rule-based algorithm (RBA) or decision tree, least-squares method (LSM), k-nearest neighbor algorithm (k-NN), dynamic time warping (DTW- 1 and DTW-2), and support vector machines (SVM). In the first part of this study, eight different leg motions are classified using only two single-axis gyroscopes. In the second part, human activities are classified using five sensor units worn on different parts of the body. Each sensor unit comprises a tri-axial gyroscope, a tri-axial accelerometer and a tri-axial magnetometer. Different feature sets extracted from the raw sensor data and these are used in the classification process. A number of feature extraction and reduction techniques (principal component analysis) as well as different cross-validation techniques have been implemented and compared. A performance comparison of these classification methods is provided in terms of their correct differentiation rates, confusion matrices, pre-processing and training times and classification times. Among the classification techniques we have considered and implemented, SVM, in general, gives the highest correct differentiation rate, followed by k-NN. The classification time for RBA is the shortest, followed by SVM or LSM, k-NN or DTW-1, and DTW-2 methods. SVM requires the longest training time, whereas DTW-2 takes the longest amount of classification time. Although there is not a significant difference between the correct differentiation rates obtained by different crossvalidation techniques, repeated random sub-sampling uses the shortest amount of classification time, whereas leave-one-out requires the longest.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback