BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "k-Means algorithm"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Toward an estimation of user tagging credibility for social image retrieval
    (ACM, 2014-11) Ginsca, A. L.; Popescu, A.; Ionescu, B.; Armağan, Anıl; Kanellos, I.
    Existing image retrieval systems exploit textual or/and visual information to return results. Retrieval is mostly focused on data themselves and disregards the data sources. In Web 2.0 platforms, the quality of annotations provided by different users can vary strongly. To account for this variability, we complement existing methods by introducing user tagging credibility in the retrieval process. Tagging credibility is automatically estimated by leveraging a large set of visual concept classifiers learned with Overfeat, a convolutional neural network (CNN) feature. A good image retrieval system should return results that are both relevant and diversified and here we tackle both challenges. Classically, we diversify results by using a k-Means algorithm and increase relevance by favoring images uploaded by users with good credibility estimates. Evaluation is performed on DIV400, a publicly available social image retrieval dataset and shows that our method is competitive with existing approaches.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback