Browsing by Subject "hydrogen"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Hierarchical Electrospun Nanofibers for Energy Harvesting, Production and Environmental Remediation(Royal Society of Chemistry, 2014) Kumar, P. S.; Sundaramurthy, J.; Sundarrajan, S.; Babu, V. J.; Singh, G.; Allakhverdiev, S. I.; Ramakrishna, S.As the demand for energy is rapidly growing worldwide ahead of energy supply, there is an impulse need to develop alternative energy-harvesting technologies to sustain economic growth. Due to their unique optical and electrical properties, one-dimensional (1D) electrospun nanostructured materials are attractive for the construction of active energy harvesting devices such as photovoltaics, photocatalysts, hydrogen energy generators, and fuel cells. 1D nanostructures produced from electrospinning possess high chemical reactivity, high surface area, low density, as well as improved light absorption and dye adsorption compared to their bulk counterparts. So, research has been focused on the synthesis of 1D nanostructured fibers made from metal oxides, composites, dopants and surface modification. Furthermore, fine tuning these NFs has facilitated fast charge transfer and efficient charge separation for improved light absorption in photocatalytic and photovoltaic properties. The recent trend in exploring these electrospun nanostructures has been promising in-terms of reducing costs and enhancing the efficiency compared to conventional materials. This review article presents the synthesis of 1D nanostructured fibers made via electrospinning and their applications in photovoltaics, photocatalysis, hydrogen energy harvesting and fuel cells. The current challenges and future perspectives for electrospun nanomaterials are also reviewed.Item Open Access Plasma-assisted atomic layer deposition of III-nitride thin films(2014) Özgit-Akgün, ÇağlaIII-nitride compound semiconductors and their alloys have emerged as versatile and high-performance materials for a wide range of electronic and optoelectronic device applications. Besides possessing very unique material properties individually, members of the III-nitride family with wurtzite (hexagonal) crystal structure also exhibit direct band gaps, which cover a wide range with values of 6.2, 3.4 and 0.64 eV for AlN, GaN and InN, respectively. In this respect, ternary and quaternary alloys of this family are particularly important since their bandgaps can easily be tuned by adjusting the alloy composition. Although high quality IIInitride thin lms can be grown at high temperatures (>1000 XC) with signi cant rates, deposition of these lms on temperature-sensitive device layers and substrates necessitates the adaptation of low-temperature methods such as atomic layer deposition (ALD). ALD is a special type of chemical vapor deposition, in which the substrate surface is exposed to sequential pulses of two or more precursors separated by purging periods. When compared to other low-temperature thin lm deposition techniques, ALD stands out with its self-limiting growth mechanism, which enables the deposition of highly uniform and conformal thin lms with sub-angstrom thickness control. Moreover, alloy thin lms can be easily deposited by ALD, where lm composition is digitally controlled by the relative number of subcycles. In this thesis, we report on the development of plasma-assisted ALD (PAALD) processes for III-nitrides, and present detailed characterization results for the deposited thin lms and fabricated nanostructures. PA-ALD of polycrystalline wurtzite AlN thin lms was realized at temperatures ranging from 100- 500 XC using trimethylaluminum (AlMe3) as the Al precursor. Films deposited at temperatures within the ALD window (100-200 XC for both ammonia (NH3) and N2/H2 plasma processes) were C-free and had relatively low O concentrations (<3 at.%). We also demonstrated the conformality of AlMe3-NH3 plasma process by fabricating high surface area AlN hollow nano bers using electrospun nylon nano ber mats as sacri cial templates. Our initial e orts for depositing GaN and InN resulted in thin lms with high O concentrations. Although - at rst - the most probable source of this contamination was presumed as the O-containing impurities in the unpuri ed 5N-grade NH3 gas, subsequent experiments revealed the true source as the quartz tube of inductively coupled RF-plasma (ICP) source itself. In view of these circumstances, the choice of N-containing plasma gas (NH3, N2/H2 or N2) determined the severity of O incorporation into AlN and GaN lms deposited by PA-ALD. As an e ort to completely avoid this plasma-related oxygen contamination problem, we replaced the original quartz-based ICP source of the ALD system with a stainless steel hollow cathode plasma (HCP) source. Thereby we demonstrated the low-temperature hollow cathode PA-ALD (HCPAALD) of crystalline AlN, GaN and AlxGa1−xN thin lms with low impurity concentrations (O, C <1 at.%) using AlMe3 and trimethylgallium (GaMe3) as the Al and Ga precursors, respectively. Optical band edge values of the AlxGa1−xN lms shifted to lower wavelengths with the increasing Al content, indicating the tunability of band edge values with alloy composition. HCPA-ALD of InN was also investigated within the scope of this study. Initial results revealed the possibility to obtain single-phase wurtzite InN thin lms using cyclopentadienyl indium (CpIn) as the In precursor.Item Open Access Size effect in the oxidation-reduction processes of platinum particles supported onto silicon dioxide(Maik Nauka Publishing / Springer SBM, 2015) Smirnov, M.Yu.; Kalinkin, A.V.; Vovk, E.I.; Bukhtiyarov V.I.The interaction of the Pt/SiO2 model catalysts as thin films on the surface of tantalum supports with a mixture of NO + O2 (1: 1) was studied by X-ray photoelectron spectroscopy. The pressure of the reaction mixture was varied from 6 to 64 mbar, and the temperature was varied from room temperature to 500°C. Two types of the catalysts, in which the Pt/Si atomic ratios were ~0.1 and ~0.3 (0.1-Pt/SiO2 and 0.3-Pt/SiO2, respectively) according to the XPS data, were studied. In 0.1-Pt/SiO2, the particles of platinum predominantly had a size from 1 to 2.5 nm; a wide Pt particle size distribution in a range from 1 to 15 nm with a maximum at ~4 nm was characteristic of 0.3-Pt/SiO2. The interaction of all of the samples with NO + O2 at room temperature led to the dissolution of oxygen atoms in the bulk of platinum metal particles. As the reaction temperature was increased, PtO x platinum oxide particles were formed: from small Pt particles in 0.1-Pt/SiO2 at 300°C and from larger particles in 0.3-Pt/SiO2 at 400-500°C. It was established that the reactivity of platinum oxide particles toward hydrogen also depended on the particle size. The small particles of platinum oxide were converted into platinum metal under the action of hydrogen (16 mbar) at 300°C. The coarse particles of PtO x in the samples of 0.3-Pt/SiO2 were reduced much more easily starting with room temperature. © 2015 Pleiades Publishing, Ltd.