Browsing by Subject "gold nanoparticles"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Cascading and modifying nonradiative energy transfer mechanisms in strong coupling region of plasmons and excitons in semiconductor quantum dots(2010) Akın, OnurNonradiative energy transfer finds important applications in nanophotonics and nanobiotechnology including nanoscale optical waveguiding and biological nanosensors. Various fluorophores can take part in such energy transfer interactions in close proximity of each other. Their emission kinetics can be strongly modified and controlled as a result. For example, colloidal semiconductor quantum dots, also known as nanocrystals, have widely been shown to serve as donors and acceptors among themselves or with other fluorescent species to transfer excitation energy nonradiatively. In their close proximity, emission characteristics of such fluorophores can also be altered when coupled with plasmonic structures, e.g., metal nanoparticles. One favored result of these plasmon-exciton interactions is the emission enhancement. In principle it is possible to plasmon-couple acceptor-donor pairs of nonradiative energy transfer to modify their transfer rate. Such plasmon-mediated energy transfer has been demonstrated, where both acceptor-donor pairs are plasmoncoupled. In these cases, however, the resulting plasmon-exciton interactions are not controlled to take place either at the donor site or the acceptor site but at both of the sites. Therefore, it has previously not been possible to identify the coupled interactions. In this thesis, we propose and demonstrate cascaded plasmonic - nonradiative energy transfer interactions that are controlled by selectively plasmon-coupling either only the donor quantum dots or only the acceptor quantum dots. For that, we designed a novel self-assembly architecture of our hybrid layered systems of semiconductor nanocrystals and metal nanoparticles in a bottom-up fashion through precise spatial and spectral control. This scheme uniquely allowed for the ability to spatially control plasmonexciton interactions to take place either at the “start” site (donors) or “finish” site (acceptors) of the energy transfer. This control was achieved by placing the plasmonic layer in the right proximity of the donors (for strong donor-exciton plasmon-coupling) while sufficiently being far away from the acceptors (for weak acceptor-exciton plasmon-coupling), or vice versa. Here we comparatively studied and analyzed consequent modifications of quantum dot emission kinetics in response to both cases of plasmon-coupling to only the donors and to only the acceptors through steady-state and time-resolved photoluminescence measurements, along with their lifetime and rate calculations. Such cascaded energy transfer interactions in the strong exciton-plasmon coupling region hold great promise for innovative near-field photonic devices and biological tags. system.Item Open Access Laser synthesized gold nanoparticles for high sensitive strain gauges(2013) Burzhuev, SalamatRecently, the conduction properties of nanoparticle films have received great deal of attention due to their unique properties attributed to quantum tunneling effect. Quantum tunneling effect, highly dependent on quantum barrier height and width, is very attractive for sensor applications. Resistive strain gauges based on gold nanoparticle (Au-NP) films show high strain sensitivity. These strain gauges are applicable for miniature applications because of its size. In addition, this nanoparticle films could be also used for various applications such as pressure and vapor sensors. Clean surfaces of laser generated Au-NPs provide high tunneling decay constant. Therefore, these films are promising for high sensitive sensor applications. In our study, the Au-NPs were directly synthesized in deionized water by nanosecond laser ablation method. The clean surface, size and aggregate clusters of Au-NPs offer advantages for high sensitivity strain sensor. We prepared Au-NPs films on flexible PDMS substrate by using hands-on drop-cast method. To obtain high gauge factor, we also investigated the nanoparticle concentration on the thin films. Laser-generated AuNPs films demonstrated gauge factor of ∼300 for higher than 0.22% strain and ∼80 for the strain lower than 0.22%, which is favorably comparable to reported sensitivities for strain sensors based on Au-NPs. Mechanical characterizations for the prolonged working durations suggest long term stability of these strain sensors. We discuss several models describing conductance of Au-NP films in low and high strain regimes. To the best of our knowledge, the conduction of laser generated Au-NP films has not been studied up to date, and it is the first study that shows high strain sensitivity of these films. Au-NP films may be promising for sensor applications.