BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "gene mapping"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Mutation in TOR1AIP1 encoding LAP1B in a form of muscular dystrophy: A novel gene related to nuclear envelopathies
    (Elsevier Ltd, 2014) Kayman-Kurekci G.; Talim, B.; Korkusuz P.; Sayar, N.; Sarioglu, T.; Oncel I.; Sharafi P.; Gundesli H.; Balci-Hayta, B.; Purali, N.; Serdaroglu-Oflazer P.; Topaloglu H.; Dincer P.
    We performed genome-wide homozygosity mapping and mapped a novel myopathic phenotype to chromosomal region 1q25 in a consanguineous family with three affected individuals manifesting proximal and distal weakness and atrophy, rigid spine and contractures of the proximal and distal interphalangeal hand joints. Additionally, cardiomyopathy and respiratory involvement were noted. DNA sequencing of torsinA-interacting protein 1 (TOR1AIP1) gene encoding lamina-associated polypeptide 1B (LAP1B), showed a homozygous c.186delG mutation that causes a frameshift resulting in a premature stop codon (p.E62fsTer25). We observed that expression of LAP1B was absent in the patient skeletal muscle fibres. Ultrastructural examination showed intact sarcomeric organization but alterations of the nuclear envelope including nuclear fragmentation, chromatin bleb formation and naked chromatin. LAP1B is a type-2 integral membrane protein localized in the inner nuclear membrane that binds to both A- and B-type lamins, and is involved in the regulation of torsinA ATPase. Interestingly, luminal domain-like LAP1 (LULL1)-an endoplasmic reticulum-localized partner of torsinA-was overexpressed in the patient's muscle in the absence of LAP1B. Therefore, the findings suggest that LAP1 and LULL1 might have a compensatory effect on each other. This study expands the spectrum of genes associated with nuclear envelopathies and highlights the critical function for LAP1B in striated muscle. © 2014 Elsevier B.V.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Mutations in the very low-density lipoprotein receptor VLDLR cause cerebellar hypoplasia and quadrupedal locomotion in humans
    (National Academy of Sciences, 2008) Ozcelik, T.; Akarsu, N.; Uz, E.; Caglayan, S.; Gulsuner, S.; Onat, O. E.; Tan, M.; Tan, U.
    Quadrupedal gait in humans, also known as Unertan syndrome, is a rare phenotype associated with dysarthric speech, mental retardation, and varying degrees of cerebrocerebellar hypoplasia. Four large consanguineous kindreds from Turkey manifest this phenotype. In two families (A and D), shared homozygosity among affected relatives mapped the trait to a 1.3-Mb region of chromosome 9p24. This genomic region includes the VLDLR gene, which encodes the very low-density lipoprotein receptor, a component of the reelin signaling pathway involved in neuroblast migration in the cerebral cortex and cerebellum. Sequence analysis of VLDLR revealed nonsense mutation R257X in family A and single-nucleotide deletion c2339delT in family D. Both these mutations are predicted to lead to truncated proteins lacking transmembrane and signaling domains. In two other families (B and C), the phenotype is not linked to chromosome 9p. Our data indicate that mutations in VLDLR impair cerebrocerebellar function, conferring in these families a dramatic influence on gait, and that hereditary disorders associated with quadrupedal gait in humans are genetically heterogeneous.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    SBGNViz: A tool for visualization and complexity management of SBGN process description maps
    (Public Library of Science, 2015) Sari, M.; Bahceci I.; Dogrusoz, U.; Sumer, S.O.; Aksoy, B.A.; Babur O.; Demir, E.
    Background Information about cellular processes and pathways is becoming increasingly available in detailed, computable standard formats such as BioPAX and SBGN. Effective visualization of this information is a key recurring requirement for biological data analysis, especially for -omic data. Biological data analysis is rapidly migrating to web based platforms; thus there is a substantial need for sophisticated web based pathway viewers that support these platforms and other use cases. Results Towards this goal, we developed a web based viewer named SBGNViz for process description maps in SBGN (SBGN-PD). SBGNViz can visualize both BioPAX and SBGN formats. Unique features of SBGNViz include the ability to nest nodes to arbitrary depths to represent molecular complexes and cellular locations, automatic pathway layout, editing and highlighting facilities to enable focus on sub-maps, and the ability to inspect pathway members for detailed information from EntrezGene. SBGNViz can be used within a web browser without any installation and can be readily embedded into web pages. SBGNViz has two editions built with ActionScript and JavaScript. The JavaScript edition, which also works on touch enabled devices, introduces novel methods for managing and reducing complexity of large SBGN-PD maps for more effective analysis. Conclusion SBGNViz fills an important gap by making the large and fast-growing corpus of rich pathway information accessible to web based platforms. SBGNViz can be used in a variety of contexts and in multiple scenarios ranging from visualization of the results of a single study in a web page to building data analysis platforms. © 2015 Sari et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback