Browsing by Subject "gene expression profiling"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Extreme clonality in lymphoblastoid cell lines with implications for allele specific expression analyses(2008) Plagnol V.; Uz, E.; Wallace, C.; Stevens H.; Clayton, D.; Ozcelik, T.; Todd J.A.Lymphoblastoid cell lines (LCL) are being actively and extensively used to examine the expression of specific genes and (genome-wide expression profiles, including allele specific expression assays. However, it has recently been shown that approximately 10% of human genes exhibit random patterns of monoallelic expression within single clones of LCLs. Consequently allelic imbalance studies could be significantly compromised if bulk populations of donor cells are clonal, or near clonal. Here, using X chromosome inactivation as a readout, we confirm and quantify widespread near monoclonality in two independent sets of cell lines. Consequently, we recommend where possible the use of bulk, non cell line, ex vivo cells for allele specific expression assays. © 2008 Plagnol et al.Item Open Access Identification of endogenous reference genes for qRT-PCR analysis in normal matched breast tumor tissues(Cognizant Communication Corporation, 2009) Gur-Dedeoglu, B.; Konu, O.; Bozkurt, B.; Ergul, G.; Seckin, S.; Yulug, I. G.Quantitative gene expression measurements from tumor tissue are frequently compared with matched normal and/or adjacent tumor tissue expression for diagnostic marker gene selection as well as assessment of the degree of transcriptional deregulation in cancer. Selection of an appropriate reference gene (RG) or an RG panel, which varies depending on cancer type, molecular subtypes, and the normal tissues used for interindividual calibration, is crucial for the accurate quantification of gene expression. Several RG panels have been suggested in breast cancer for making comparisons among tumor subtypes, cell lines, and benign/malignant tumors. In this study, expression patterns of 15 widely used endogenous RGs (ACTB, TBP, GAPDH, SDHA, HPRT, HMBS, B2M, PPIA, GUSB, YWHAZ2, PGK1, RPLP0, PUM1, MRPL19, and RPL41), and three candidate genes that were selected through analysis of two independent microarray datasets (IL22RA1, TTC22, ZNF224) were determined in 23 primary breast tumors and their matched normal tissues using qRTPCR. Additionally, 18S rRNA, ACTB, and SDHA were tested using randomly primed cDNAs from 13 breast tumor pairs to assess the rRNA/mRNA ratio. The tumors exhibited significantly lower rRNA/mRNA ratio when compared to their normals, on average. The expression of the studied RGs in breast tumors did not exhibit differences in terms of grade, ER, or PR status. The stability of RGs was examined based on two different statistical models, namely GeNorm and NormFinder. Among the 18 tested endogenous reference genes, ACTB and SDHA were identified as the most suitable reference genes for the normalization of qRTPCR data in the analysis of normal matched tumor breast tissue pairs by both programs. In addition, the expression of the gelsolin (GSN) gene, a well-known downregulated target in breast tumors, was analyzed using the two most suitable genes and different RG combinations to validate their effectiveness as a normalization factor (NF). The GSN expression of the tumors used in this study was significantly lower than that of normals showing the effectivity of using ACTB and SDHA as suitable RGs in this set of tumor–normal tissue panel. The combinational use of the best performing two RGs (ACTB and SDHA) as a normalization factor can be recommended to minimize sample variability and to increase the accuracy and resolution of gene expression normalization in tumor–normal paired breast cancer qRT-PCR studies.