Browsing by Subject "gene mutation"
Now showing 1 - 11 of 11
- Results Per Page
- Sort Options
Item Open Access Activating mutations of STAT5B and STAT3 in lymphomas derived from γδ-T or NK cells(Nature Publishing Group, 2015) Küçük, C.; Jiang, B.; Hu X.; Zhang W.; Chan J.K.C.; Xiao W.; Lack, N.; Alkan, C.; Williams J.C.; Avery, K.N.; Kavak P.; Scuto, A.; Sen, E.; Gaulard P.; Staudt L.; Iqbal J.; Zhang W.; Cornish, A.; Gong Q.; Yang Q.; Sun H.; D'Amore F.; Leppä, S.; Liu W.; Fu, K.; De Leval L.; McKeithan, T.; Chan W.C.Lymphomas arising from NK or γδ-T cells are very aggressive diseases and little is known regarding their pathogenesis. Here we report frequent activating mutations of STAT3 and STAT5B in NK/T-cell lymphomas (n=51), γδ-T-cell lymphomas (n=43) and their cell lines (n=9) through next generation and/or Sanger sequencing. STAT5B N642H is particularly frequent in all forms of γδ-T-cell lymphomas. STAT3 and STAT5B mutations are associated with increased phosphorylated protein and a growth advantage to transduced cell lines or normal NK cells. Growth-promoting activity of the mutants can be partially inhibited by a JAK1/2 inhibitor. Molecular modelling and surface plasmon resonance measurements of the N642H mutant indicate a marked increase in binding affinity of the phosphotyrosine-Y699 with the mutant histidine. This is associated with the prolonged persistence of the mutant phosphoSTAT5B and marked increase of binding to target sites. Our findings suggest that JAK-STAT pathway inhibition may represent a therapeutic strategy. © 2015 Macmillan Publishers Limited. All rights reserved.Item Open Access Common telomerase reverse transcriptase promoter mutations in hepatocellular carcinomas from different geographical locations(WJG Press, 2015) Cevik, D.; Yildiz G.; Ozturk, M.AIM: To determine the mutation status of human telomerase reverse transcriptase gene (TERT ) promoter region in hepatocellular carcinoma (HCC) from different geographical regions. METHODS: We analyzed the genomic DNA sequences of 59 HCC samples comprising 15 cell lines and 44 primary tumors, collected from patients living in Asia, Europe and Africa. We amplified a 474 bp DNA fragment of the promoter region of TERT gene including the 1295228 and 1295250 sequence of chromosome 5 by using PCR. Amplicons were then sequenced by Sanger technique and the sequence data were analyzed with by using DNADynamo software in comparison with wild type TERT gene sequence as a reference. RESULTS: The TERT mutations were found highly frequent in HCC. Eight of the fifteen tested cell lines displayed C228T mutation, and one had C250T mutation with a mutation frequency up to 60%. All of the mutations were heterozygous and mutually exclusive. Ten out of forty-four tumors displayed C228T mutation, and additional five tumors had C250T mutation providing evidence for mutation frequency of 34% in primary tumors. Considering the geographic origins of HCC tumors tested, TERT promoter mutation frequencies were higher in African (53%), when compared to non-African (24%) tumors (P = 0.056). There was also a weak inverse correlation between TERT promoter mutations and murine double minute 2 single nucleotide polymorphism 309 TG polymorphism (P = 0.058). Mutation frequency was nearly two times higher in established HCC cell lines (60%) compared to the primary tumors (34%). CONCLUSION: TERT promoter is one of most frequent mutational targets in liver cancer, and hepatocellular carcinogenesis is highly associated with the loss of telomere-dependent cellular senescence control. © The Author(s) 2015.Item Open Access Mdm2 Snp309 G allele displays high frequency and inverse correlation with somatic P53 mutations in hepatocellular carcinoma(Elsevier, 2010) Acun T.; Terzioǧlu-Kara, E.; Konu, O.; Ozturk, M.; Yakicier, M. C.Loss of function of the p53 protein, which may occur through a range of molecular events, is critical in hepatocellular carcinoma (HCC) evolution. MDM2, an oncogene, acts as a major regulator of the p53 protein. A polymorphism in the MDM2 promoter, SNP309 (T/G), has been shown to alter protein expression and may thus play a role in carcinogenesis. MDM2 SNP309 is also associated with HCC. However, the role of SNP309 in hepatocarcinogenesis with respect to TP53 mutations is unknown. In this study, we investigated the distribution of the MDM2 SNP309 genotype and somatic TP53 (the p53 tumor suppressor gene) mutations in 99 human HCC samples from Africa, Europe, China and Japan. Samples exhibited striking geographical differences in their distribution of SNP309 genotypes. The frequency and spectrum of p53 mutations also varied geographically; TP53 mutations were frequent in Africa, where the SNP309 T/T genotype predominated but were rare in Europe and Japan, where the SNP309 G allele was present more frequently. TP53 mutations were detected in 18% (4/22) of SNP309 T/G and G/G and 82% (18/22) of SNP309 T/T genotype holders; this difference was statistically highly significant (P-value = 0.0006). Our results indicated that the presence of the SNP309 G allele is inversely associated with the presence of somatic TP53 mutations because they only coincided in 4% of HCC cases. This finding suggests that the SNP309 G allele may functionally replace p53 mutations, and in addition to known etiological factors, may be partly responsible for differential HCC prevalence. © 2009 Elsevier B.V. All rights reserved.Item Open Access Muscle Hemangiomatosis presenting as a severe feature in a patient with the pten mutation: Expanding the phenotype of vascular malformations in bannayan-riley-ruvalcaba syndrome(2012) Soysal, Y.; Acun, T.; Lourenço, C.M.; Marques Jr. W.; Yakicier, M.C.Bannayan-Riley-Ruvalcaba syndrome (BRRS) is a rare autosomal, dominantly-inherited, hamartoma syndrome with distinct phenotypic features. Mutations in the PTEN gene have been identified in PTEN hamartoma tumor syndromes. Our aim was to determine the correlation of phenotype-genotype relationships in a BRRS case. We have evaluated a PTEN mutation in a patient with vascular anomalies and the phenotypic findings of BRRS. We described an 8-year-old girl with the clinical features of BRRS, specifically with vascular anomalies. The mutation in the PTEN gene was identified by DNA sequencing. In our patient, we defined a de novo nonsense R335X (c.1003 C>T) mutation in exon 8, which results in a premature termination codon. Due to vascular anomalies and hemangioma, the patient's left leg was amputated 1 year after the hemangioma diagnosis. Bannayan - Riley - Ruvalcaba syndrome patients with macrocephaly and vascular anomalies should be considered for PTEN mutation analysis and special medical care.Item Open Access Mutation in TOR1AIP1 encoding LAP1B in a form of muscular dystrophy: A novel gene related to nuclear envelopathies(Elsevier Ltd, 2014) Kayman-Kurekci G.; Talim, B.; Korkusuz P.; Sayar, N.; Sarioglu, T.; Oncel I.; Sharafi P.; Gundesli H.; Balci-Hayta, B.; Purali, N.; Serdaroglu-Oflazer P.; Topaloglu H.; Dincer P.We performed genome-wide homozygosity mapping and mapped a novel myopathic phenotype to chromosomal region 1q25 in a consanguineous family with three affected individuals manifesting proximal and distal weakness and atrophy, rigid spine and contractures of the proximal and distal interphalangeal hand joints. Additionally, cardiomyopathy and respiratory involvement were noted. DNA sequencing of torsinA-interacting protein 1 (TOR1AIP1) gene encoding lamina-associated polypeptide 1B (LAP1B), showed a homozygous c.186delG mutation that causes a frameshift resulting in a premature stop codon (p.E62fsTer25). We observed that expression of LAP1B was absent in the patient skeletal muscle fibres. Ultrastructural examination showed intact sarcomeric organization but alterations of the nuclear envelope including nuclear fragmentation, chromatin bleb formation and naked chromatin. LAP1B is a type-2 integral membrane protein localized in the inner nuclear membrane that binds to both A- and B-type lamins, and is involved in the regulation of torsinA ATPase. Interestingly, luminal domain-like LAP1 (LULL1)-an endoplasmic reticulum-localized partner of torsinA-was overexpressed in the patient's muscle in the absence of LAP1B. Therefore, the findings suggest that LAP1 and LULL1 might have a compensatory effect on each other. This study expands the spectrum of genes associated with nuclear envelopathies and highlights the critical function for LAP1B in striated muscle. © 2014 Elsevier B.V.Item Open Access Mutations in the very low-density lipoprotein receptor VLDLR cause cerebellar hypoplasia and quadrupedal locomotion in humans(National Academy of Sciences, 2008) Ozcelik, T.; Akarsu, N.; Uz, E.; Caglayan, S.; Gulsuner, S.; Onat, O. E.; Tan, M.; Tan, U.Quadrupedal gait in humans, also known as Unertan syndrome, is a rare phenotype associated with dysarthric speech, mental retardation, and varying degrees of cerebrocerebellar hypoplasia. Four large consanguineous kindreds from Turkey manifest this phenotype. In two families (A and D), shared homozygosity among affected relatives mapped the trait to a 1.3-Mb region of chromosome 9p24. This genomic region includes the VLDLR gene, which encodes the very low-density lipoprotein receptor, a component of the reelin signaling pathway involved in neuroblast migration in the cerebral cortex and cerebellum. Sequence analysis of VLDLR revealed nonsense mutation R257X in family A and single-nucleotide deletion c2339delT in family D. Both these mutations are predicted to lead to truncated proteins lacking transmembrane and signaling domains. In two other families (B and C), the phenotype is not linked to chromosome 9p. Our data indicate that mutations in VLDLR impair cerebrocerebellar function, conferring in these families a dramatic influence on gait, and that hereditary disorders associated with quadrupedal gait in humans are genetically heterogeneous.Item Open Access Neuro-ophthalmologic findings in humans with quadrupedal locomotion(2012) Sarac O.; Gulsuner, S.; Yildiz-Tasci, Y.; Ozcelik, T.; Kansu, T.Purpose: To report the neuro-ophthalmologic findings in four patients from the same family with cerebellar ataxia, mental retardation, and dysequilibrium syndrome (CAMRQ)2 associated with quadrupedal locomotion. Method: A case series. Results: All four patients carry the private missense mutation, WDR81 p.P856L. The brain Magnetic Resonance Imaging (MRI) of these patients revealed morphological abnormalities including mild hypoplasia of the corpus callosum, and atrophy of superior, middle, and inferior peduncles of the cerebellum. All patients had down-beat nystagmus, while two male patients additionally had bilateral temporal disc pallor along with ring-shaped macular atrophy. Conclusions: The neuro-ophthalmic examination in CAMRQ2 revealed downbeat nystagmus in all patients, and temporal disc pallor and macular atrophy in two patients. It remains to be determined whether these findings are consistent in other forms of CAMRQ with mutations in VLDLR or CA8. © 2012 Informa Healthcare USA, Inc.Item Open Access De novo balanced (X;14) translocation in a patient with recurrent miscarriages: Case report(2011) Alpaslan Pinarli F.; Ökten G.; ÖzçelIk, T.; Kara, N.; Güneş, S.; Koçak I.We report a 23-year-old phenotypically normal female patient who had previously suffered from recurrent spontaneous abortion (RSA) who found to have an X;14 trans location and a Methylene- Tetrahdrofolate-Reductase (MTHFR) C677T heterozygote mutation. G-banding cytogenetic analysis was cultured from the peripheral blood lymphocy tes. MTHFR, factor V Leiden and prothrombin gene mutations were studied from DNA obtained from peripheral blood lym- phocytes with stripassay. DNA for X inactivation pattern study was also obtained with the method described above. G-banding cytogentic analysis from cultured peripheral blood lymphocytes of the patient revealed 46,XderX,t(X;14)(q13;q32) and found to be heterozygous for C677T MTHFR mutation. An X inactivation pattern study revealed a complete inactivated nor mal X chromosome, asexpected. The possible causes of recurrent miscarriages in our patient were unbalanced gametes, skewed X inactivation and MTHFR C677T heterozygote mutation. © 2011 by Türkiye Klinikleri.Item Open Access p53 mutation as a source of aberrant β-catenin accumulation in cancer cells(2002) Cagatay, T.; Ozturk, M.β-catenin is involved in both cell-cell interactions and wnt pathway-dependent cell fate determination through its interactions with E-cadherin and TCF/LEF transcription factors, respectively. Cytoplasmic/nuclear levels of β-catenin are important in regulated transcriptional activation of TCF/LEF target genes. Normally, these levels are kept low by proteosomal degradation of β-catenin through Axin1- and APC-dependent phosphorylation by CKI and GSK-3β. Deregulation of β-catenin degradation results in its aberrant accumulation, often leading to cancer. Accordingly, aberrant accumulation of β-catenin is observed at high frequency in many cancers. This accumulation correlates with either mutational activation of CTNNB1 (β-catenin) or mutational inactivation of APC and Axin1 genes in some tumors. However, there are many tumors that display β-catenin accumulation in the absence of a mutation in these genes. Thus, there must be additional sources for aberrant β-catenin accumulation in cancer cells. Here, we provide experimental evidence that wild-type β-catenin accumulates in hepatocellular carcinoma (HCC) cells in association with mutational inactivation of p53 gene. We also show that worldwide p53 and β-catenin mutation rates are inversely correlated in HCC. These data suggest that inactivation of p53 is an important cause of aberrant accumulation of β-catenin in cancer cells.Item Open Access SIP1 is downregulated in hepatocellular carcinoma by promoter hypermethylation(2011) Acun, T.; Oztas, E.; Yagci, T.; Yakicier, M.C.Background: Smad interacting protein-1 is a transcription factor that is implicated in transforming growth factor-β/bone morphogenetic protein signaling and a repressor of E-cadherin and human telomerase reverse transcriptase. It is also involved in epithelial-mesenchymal transition and tumorigenesis. However, genetic and epigenetic alterations of SIP1 have not been fully elucidated in cancers. In this study, we investigated mutations and promoter hypermethylation of the SIP1 gene in human hepatocellular carcinomas.Methods: SIP1 expression was analyzed in HCC cell lines and primary tumors in comparison to normal and non-tumor liver tissues by using semi-quantitative RT-PCR, quantitative real-time RT-PCR and immunohistochemistry. Mutation and deletion screening of the SIP1 gene were performed by direct sequencing in HCC-derived cells. Restoration of SIP1 expression was sought by treating HCC cell lines with the DNA methyl transferase inhibitor, 5-AzaC, and the histone deacetylase inhibitor, TSA. SIP1 promoter methylation was analyzed by the combined bisulfite restriction analysis assay in in silico-predicted putative promoter and CpG island regions.Results: We found that the expression of SIP1 was completely lost or reduced in five of 14 (36%) HCC cell lines and 17 of 23 (74%) primary HCC tumors. Immunohistochemical analysis confirmed that SIP1 mRNA downregulation was associated with decreased expression of the SIP1 protein in HCC tissues (82.8%). No somatic mutation was observed in SIP1 exons in any of the 14 HCC cell lines. Combined treatment with DNA methyl transferase and histone deacetylase inhibitors synergistically restored SIP1 expression in SIP1-negative cell lines. Analysis of three putative gene regulatory regions revealed tumor-specific methylation in more than half of the HCC cases.Conclusions: Epigenetic mechanisms contribute significantly to the downregulation of SIP1 expression in HCC. This finding adds a new level of complexity to the role of SIP1 in hepatocarcinogenesis. © 2011 Acun et al; licensee BioMed Central Ltd.Item Open Access Structures and free energy landscapes of the wild-type and A30P mutant-type α-synuclein proteins with dynamics(2013) Wise-Scira O.; Aloglu, A.K.; Dunn, A.; Sakallioglu I.T.; Coskuner O.The genetic missense A30P mutation of the wild-type α-synuclein protein results in the replacement of the 30th amino acid residue from alanine (Ala) to proline (Pro) and was initially found in the members of a German family who developed Parkinson's disease. Even though the structures of these proteins have been measured before, detailed understanding about the structures and their relationships with free energy landscapes is lacking, which is of interest to provide insights into the pathogenic mechanism of Parkinson's disease. We report the secondary and tertiary structures and conformational free energy landscapes of the wild-type and A30P mutant-type α-synuclein proteins in an aqueous solution environment via extensive parallel tempering molecular dynamics simulations along with thermodynamic calculations. In addition, we present the residual secondary structure component transition stabilities at the atomic level with dynamics in terms of free energy change calculations using a new strategy that we reported most recently. Our studies yield new interesting results; for instance, we find that the A30P mutation has local as well as long-range effects on the structural properties of the wild-type α-synuclein protein. The helical content at Ala18-Gly31 is less prominent in comparison to the wild-type α-synuclein protein. The β-sheet structure abundance decreases in the N-terminal region upon A30P mutation of the wild-type α-synuclein, whereas the NAC and C-terminal regions possess larger tendencies for β-sheet structure formation. Long-range intramolecular protein interactions are less abundant upon A30P mutation, especially between the NAC and C-terminal regions, which is linked to the less compact and less stable structures of the A30P mutant-type rather than the wild-type α-synuclein protein. Results including the usage of our new strategy for secondary structure transition stabilities show that the A30P mutant-type α-synuclein tendency toward aggregation is higher than the wild-type α-synuclein but we also find that the C-terminal and NAC regions of the A30P mutant-type α-synuclein are reactive toward fibrillzation and aggregation based on atomic level studies with dynamics in an aqueous solution environment. Therefore, we propose that small molecules or drugs blocking the specific residues, which we report herein, located in the NAC- and C-terminal regions of the A30P mutant-type α-synuclein protein might help to reduce the toxicity of the A30P mutant-type α-synuclein protein. © 2013 American Chemical Society.