Browsing by Subject "dynamic time warping"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Human activity classification with miniature inertial sensors(2009) Tunçel, OrkunThis thesis provides a comparative study on activity recognition using miniature inertial sensors (gyroscopes and accelerometers) and magnetometers worn on the human body. The classification methods used and compared in this study are: a rule-based algorithm (RBA) or decision tree, least-squares method (LSM), k-nearest neighbor algorithm (k-NN), dynamic time warping (DTW- 1 and DTW-2), and support vector machines (SVM). In the first part of this study, eight different leg motions are classified using only two single-axis gyroscopes. In the second part, human activities are classified using five sensor units worn on different parts of the body. Each sensor unit comprises a tri-axial gyroscope, a tri-axial accelerometer and a tri-axial magnetometer. Different feature sets extracted from the raw sensor data and these are used in the classification process. A number of feature extraction and reduction techniques (principal component analysis) as well as different cross-validation techniques have been implemented and compared. A performance comparison of these classification methods is provided in terms of their correct differentiation rates, confusion matrices, pre-processing and training times and classification times. Among the classification techniques we have considered and implemented, SVM, in general, gives the highest correct differentiation rate, followed by k-NN. The classification time for RBA is the shortest, followed by SVM or LSM, k-NN or DTW-1, and DTW-2 methods. SVM requires the longest training time, whereas DTW-2 takes the longest amount of classification time. Although there is not a significant difference between the correct differentiation rates obtained by different crossvalidation techniques, repeated random sub-sampling uses the shortest amount of classification time, whereas leave-one-out requires the longest.Item Open Access Recognition and classification of human activities using wearable sensors(2012) Yurtman, ArasWe address the problem of detecting and classifying human activities using two different types of wearable sensors. In the first part of the thesis, a comparative study on the different techniques of classifying human activities using tag-based radio-frequency (RF) localization is provided. Position data of multiple RF tags worn on the human body are acquired asynchronously and non-uniformly. Curves fitted to the data are re-sampled uniformly and then segmented. The effect of varying the relevant system parameters on the system accuracy is investigated. Various curve-fitting, segmentation, and classification techniques are compared and the combination resulting in the best performance is presented. The classifiers are validated through the use of two different cross-validation methods. For the complete classification problem with 11 classes, the proposed system demonstrates an average classification error of 8.67% and 21.30% for 5-fold and subject-based leave-one-out (L1O) cross validation, respectively. When the number of classes is reduced to five by omitting the transition classes, these errors become 1.12% and 6.52%. The system demonstrates acceptable classification performance despite that tag-based RF localization does not provide very accurate position measurements. In the second part, data acquired from five sensory units worn on the human body, each containing a tri-axial accelerometer, a gyroscope, and a magnetometer, during 19 different human activities are used to calculate inter-subject and interactivity variations in the data with different methods. Absolute, Euclidean, and dynamic time-warping (DTW) distances are used to assess the similarity of the signals. The comparisons are made using time-domain data and feature vectors. Different normalization methods are used and compared. The “best” subject is defined and identified according to his/her average distance to the other subjects.Based on one of the similarity criteria proposed here, an autonomous system that detects and evaluates physical therapy exercises using inertial sensors and magnetometers is developed. An algorithm that detects all the occurrences of one or more template signals (exercise movements) in a long signal (physical therapy session) while allowing some distortion is proposed based on DTW. The algorithm classifies the executions in one of the exercises and evaluates them as correct/incorrect, identifying the error type if there is any. To evaluate the performance of the algorithm in physical therapy, a dataset consisting of one template execution and ten test executions of each of the three execution types of eight exercise movements performed by five subjects is recorded, having totally 120 and 1,200 exercise executions in the training and test sets, respectively, as well as many idle time intervals in the test signals. The proposed algorithm detects 1,125 executions in the whole test set. 8.58% of the executions are missed and 4.91% of the idle intervals are incorrectly detected as an execution. The accuracy is 93.46% for exercise classification and 88.65% for both exercise and execution type classification. The proposed system may be used to both estimate the intensity of the physical therapy session and evaluate the executions to provide feedback to the patient and the specialist.