Browsing by Subject "drug cytotoxicity"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access 3-Propionyl-thiazolidine-4-carboxylic acid ethyl esters: A family of antiproliferative thiazolidines(Royal Society of Chemistry, 2015) Önen-Bayram F.E.; Buran, K.; Durmaz I.; Berk, B.; Cetin-Atalay, R.Cancer results from unregulated cell growth. Reactivating the process of the programmed cell death, i.e. apoptosis, is a classical anticancer therapeutic strategy. The apoptosis-inducing property of the (2RS,4R)-2-phenyl-3-propionyl-thiazolidine-4-carboxylic acid ethyl ester (ALC 67) molecule has recently been discovered. We analyzed in this study the impact of the phenyl moiety of this molecule on its biological activity by synthesizing and evaluating analogues where this substituent was replaced by a series of aromatic and aliphatic groups. The results demonstrated that the molecule's antiproliferative property resisted such modifications. Thus, in addition to developing a family of thiazolidine compounds with promising anticancer properties; our investigation revealed that the second position of the thiazolidine ring can be used either to tune the physicochemical properties of ALC67 or to introduce a fluorescent tag to the structure in order to track it in cells and determine its exact molecular mechanism of action. © 2015 The Royal Society of Chemistry.Item Open Access Cytotoxic activities of some benzothiazole-piperazine derivatives(Taylor and Francis Ltd, 2015) Gurdal, E.E.; Durmaz I.; Cetin-Atalay, R.; Yarim, M.Synthesis, characterization and cytotoxic activities of ten benzothiazole-piperazine derivatives were reported. In vitro cytotoxic activities of compounds were screened against hepatocellular (HUH-7), breast (MCF-7) and colorectal (HCT-116) cancer cell lines by sulphorhodamine B assay. Based on the GI50 values of the compounds, most of the benzothiazole-piperazine derivatives are active against HUH-7, MCF-7 and HCT-116 cancer cell lines. Compound 1d is highly cytotoxic against all tested cancer cell lines. Further investigation of compound 1d by Hoechst Staining and Fluorescence-Activated Cell Sorting Analysis (FACS) revealed that this compound causes apoptosis by cell cycle arrest at subG1 phase. © 2014 Informa UK Ltd. All rights reserved.