Browsing by Subject "dipole"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Compound Hertzian chain model for copper-carbon nanocomposites' absorption spectrum(2011) Kokabi, A.; Hosseini, M.; Saeedi, S.; Moftakharzadeh, A.; Vesaghi, M.A.; Fardmanesh, M.The infrared range optical absorption mechanism of carbon-copper composite thin layer coated on the diamond-like carbon buffer layer has been investigated. By consideration of weak interactions between copper nanoparticles in their network, optical absorption is modelled using their coherent dipole behaviour induced by the electromagnetic radiation. The copper nanoparticles in the bulk of carbon are assumed as a chain of plasmonic dipoles, which have coupling resonance. Considering nearest neighbour interactions for this metallic nanoparticles, surface plasmon resonance frequency (ω 0) and coupled plasmon resonance frequency (ω 1) have been computed. The damping rate against wavelength is derived, which leads to the derivation of the optical absorption spectrum in terms of ω 0 and ω 1. The dependency of the absorption peaks to the particle size and the particle mean spacing is also investigated. The absorption spectrum is measured for different Cu-C thin films with various Cu particle size and spacing. The experimental results of absorption are compared with the obtained analytical ones. © 2011 The Institution of Engineering and Technology.Item Open Access Novel optical antennas inspired by metamaterial architectures(2011) Kılıç, Veli TayfunThe spatial resolution of conventional optical systems is commonly constrained by the diffraction limit. This is a fundamental problem important for various high-tech applications including density limitation in data storage devices (CD, DVD, and Blue-ray discs), crosstalk in detectors, and blurred images in microscopy. To overcome this limit, different types of optical antennas have been investigated to date. However, these antennas either do not exhibit a maximum level of field intensity enhancement that can be achieved via field localization using plasmons or they have large field intensity enhancement at the cost of complicated three-dimensional architectures or very sharp tips, which are hard to fabricate. In this thesis, to address this problem, we investigate a new class of planar optical antennas inspired by metamaterial architectures including E-shape and comb shape. We found that the field intensity enhancements inside the gap regions of such comb-shaped nanoantennas were significantly increased compared to the single or array of dipoles, despite operating across an electrical length significantly reduced with respect to their resonance wavelength. We also showed that the field intensity localization of a single dipole nanoantenna can be at least doubled using single ring resonator with the same gap size by decreasing field radiations from end points and obtaining continuous current flow. These results indicate that comb-shaped planar nanoantennas hold great promise for strong field localization.Item Open Access Radiation properties of sources inside photonic crystals(2003) Bulu, İrfanThe control of spontaneous emission is an important problem both in basic and applied physics. Two main problems arise in the control of emission: enhancement or suppression and angular confinement of radiation. In this work we studied the properties of emission of radiation from a localized microwave source embedded inside a photonic crystal. We showed that by using a photonic crystal it is possible to enhance the emitted power. We achieved up to 22 times enhancement of power at the band edge of the photonic crystal. We also studied the properties of emission of radiation from a source embedded inside a single defect structure and embedded inside a coupled defect structure. Enhanced emission for single defect and coupled defect structures was also observed. Moreover, angular distribution of power from a localized microwave source embedded inside a photonic crystal was studied. Angular confinement was achieved near the band edge of the photonic crystal. Half power beam widths as small as 6 degrees were obtained. This is the smallest half power beam width in the literature obtained by using photonic crystals. We also investigated frequency and size dependence of the angular distribution. We observed that the angular confinement strongly depends on frequency and on the size of the photonic crystal. In fact, we showed that angular confinement could be obtained just at the band edge frequency. In conclusion, our work showed that the problem of controlling the spontaneous emission could be solved at once by using photonic crystals.