Browsing by Subject "detection"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Restricted Neyman-Pearson approach based spectrum sensing in cognitive radio systems(2012) Turgut, EsmaOver the past decade, the demand for wireless technologies has increased enormously, which leads to a perceived scarcity of the frequency spectrum. Meanwhile, static allocation of the frequency spectrum leads to under-utilization of the spectral resources. Therefore, dynamic spectrum access has become a necessity. Cognitive radio has emerged as a key technology to solve the conflicts between spectrum scarcity and spectrum under-utilization. It is an intelligent wireless communication system that is aware of its operating environment and can adjust its parameters in order to allow unlicensed (secondary) users to access and communicate over the frequency bands assigned to licensed (primary) users when they are inactive. Therefore, cognitive radio requires reliable spectrum sensing techniques in order to avoid interference to primary users. In this thesis, the spectrum sensing problem in cognitive radio is studied. Specifically, the restricted Neyman-Pearson (NP) approach, which maximizes the average detection probability under the constraints on the minimum detection and false alarm probabilities, is applied to the spectrum sensing problem in cognitive radio systems in the presence of uncertainty in the prior probability distribution of primary users’ signals. First, we study this problem in the presence of Gaussian noise and assume that primary users’ signals are Gaussian. Then, the problem is reconsidered for non-Gaussian noise channels. Simulation results are obtained in order to compare the performance of the restricted NP approach with the existing methods such as the generalized likelihood ratio test (GLRT) and energy detection. The restricted NP approach outperforms energy detection in all cases. It is also shown that the restricted NP approach can provide important advantages over the GLRT in terms of the worst-case detection probability, and sometimes in terms of the average detection probability depending on the situation in the presence of imperfect prior information for Gaussian mixture noise channels.Item Open Access Stochastic signaling for power constrained communication systems(2011) Göken, ÇağrıIn this thesis, optimal stochastic signaling problem is studied for power constrained communications systems. In the first part, optimal stochastic signaling problem is investigated for binary communications systems under second and fourth moment constraints for any given detector structure and noise probability distribution. It is shown that an optimal signal can be represented by randomization among at most three signal levels for each symbol. Next, stochastic signaling problem is studied in the presence of an average power constraint instead of second and fourth moment constraints. It is shown that an optimal signal can be represented by randomization between at most two signal levels for each symbol in this case. For both scenarios, sufficient conditions are obtained to determine the improvability and nonimprovability of conventional deterministic signaling via stochastic signaling. In the second part of the thesis, the joint design of optimal signals and optimal detector is studied for binary communications systems under average power constraints in the presence of additive non-Gaussian noise. It is shown that the optimal solution involves randomization between at most two signal levels and the use of the corresponding maximum a posteriori probability (MAP) detector. In the last part of the thesis, stochastic signaling is investigated for power-constrained scalar valued binary communications systems in the presence of uncertainties in channel state information (CSI). First, stochastic signaling is performed based on the available imperfect channel coef- ficient at the transmitter to examine the effects of imperfect CSI. The sufficient conditions are derived for improvability and nonimprovability of deterministic signaling via stochastic signaling in the presence of CSI uncertainty. Then, two different stochastic signaling strategies, namely, robust stochastic signaling and stochastic signaling with averaging, are proposed for designing stochastic signals under CSI uncertainty. For the robust stochastic signaling problem, sufficient conditions are derived to obtain an equivalent form which is simpler to solve. In addition, it is shown that optimal signals for each symbol can be written as randomization between at most two signal levels for stochastic signaling using imperfect channel coefficient and stochastic signaling with averaging as well as for robust stochastic signaling under certain conditions. The solutions of the optimal stochastic signaling problems are obtained by using global optimization techniques, specifically, Particle Swarm Optimization (PSO), and by employing convex relaxation approaches. Numerical examples are presented to illustrate the theoretical results at the end of each part.