Browsing by Subject "covariance descriptors"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Fire and flame detection methods in images and videos(2010) Habiboğlu, Yusuf HakanIn this thesis, automatic fire detection methods are studied in color domain, spatial domain and temporal domain. We first investigated fire and flame colors of pixels. Chromatic Model, Fisher’s linear discriminant, Gaussian mixture color model and artificial neural networks are implemented and tested for flame color modeling. For images a system that extracts patches and classifies them using textural features is proposed. Performance of this system is given according to different thresholds and different features. A real-time detection system that uses information in color, spatial and temporal domains is proposed for videos. This system, which is develop by modifying previously implemented systems, divides video into spatiotemporal blocks and uses features extracted from these blocks to detect fire.Item Open Access Flame detection method in video using covariance descriptors(IEEE, 2011) Habiboǧlu, Y.H.; Günay, Osman; Çetin, A. EnisVideo fire detection system which uses a spatio-temporal covariance matrix of video data is proposed. This system divides the video into spatio-temporal blocks and computes covariance features extracted from these blocks to detect fire. Feature vectors taking advantage of both the spatial and the temporal characteristics of flame colored regions are classified using an SVM classifier which is trained and tested using video data containing flames and flame colored objects. Experimental results are presented. © 2011 IEEE.