BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "batch learning"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Batch learning of disjoint feature intervals
    (1996) Akkuş, Aynur
    This thesis presents several learning algorithms for multi-concept descriptions in the form of disjoint feature intervals, called Feature Interval Learning algorithms (FIL). These algorithms are batch supervised inductive learning algorithms, and use feature projections of the training instances for the representcition of the classification knowledge induced. These projections can be generalized into disjoint feature intervals. Therefore, the concept description learned is a set of disjoint intervals separately for each feature. The classification of an unseen instance is based on the weighted majority voting among the local predictions of features. In order to handle noisy instances, several extensions are developed by placing weights to intervals rather than features. Empirical evaluation of the FIL algorithms is presented and compared with some other similar classification algorithms. Although the FIL algorithms achieve comparable accuracies with other algorithms, their average running times are much more less than the others. This thesis also presents a new adaptation of the well-known /s-NN classification algorithm to the feature projections approach, called A:-NNFP for k-Nearest Neighbor on Feature Projections, based on a majority voting on individual classifications made by the projections of the training set on each feature and compares with the /:-NN algorithm on some real-world and cirtificial datasets.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback