Browsing by Subject "animal tissue"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Open Access Antiangiogenic response after 70% hepatectomy and its relationship with hepatic regeneration and angiogenesis in rats(2010) Dogrul, A.B.; Colakoglu, T.; Kosemehmetoglu, K.; Birben, E.; Yaman, E.; Gedikoglu G.; Abbasoglu O.Background: The aim of this study was to evaluate the antiangiogenic response and its relation to regeneration and angiogenesis after 70% hepatectomy in a rat model. Methods: Sixty-four Wistar albino rats were included in the study. Animals were allocated into 8 groups (n = 8). After a 70% hepatectomy, liver regeneration, angiogenesis, and antiangiogenic response were evaluated in the remnant liver on days 0, 1, 2, 3, 5, 7, 10, and 14. Regeneration and angiogenesis were determined with immunoreactivity to proliferating cell nuclear antigen and vascular endothelial growth factor. Antiangiogenic response was evaluated by detecting collagen 18 m RNA with reverse transcriptase polymerase chain reaction. Results: We showed that liver regeneration peaked at day 1, whereas angiogenesis in the periportal and perisinusoidal areas reached their peak values on days 3 and 7, respectively. Both regeneration and angiogenic activity around perisinusoidal hepatocytes returned to basal activity on the day 10. Antiangiogenic response first appeared on day 5, reached a peak on day 10, and returned to basal values on day 14. Conclusion: Collagen18 mRNA expression is present in the normal liver during the regenerative process. We suggest that the stimulus that causes the cessation of regeneration process may come from hepatocytes, and collagen 18 produced by hepatocytes may modulate this event by inhibiting the angiogenesis. © 2010 Mosby, Inc. All rights reserved.Item Open Access Development of a thulium (Tm:YAP) laser system for brain tissue ablation(2011) Bilici, T.; Mutlu, S.; Kalaycioglu H.; Kurt, A.; Sennaroglu, A.; Gulsoy, M.In this study, a thulium (Tm:YAP) laser system was developed for brain surgery applications. As the Tm:YAP laser is a continuous-wave laser delivered via silica fibers, it would have great potential for stereotaxic neurosurgery with highest local absorption in the IR region. The laser system developed in this study allowed the user to set the power level, exposure time, and modulation parameters (pulse width and on-off cycles). The Tm:YAP laser beam (200-600 mW, 69-208 W/cm 2) was delivered from a distance of 2 mm to cortical and subcortical regions of ex-vivo Wistar rat brain tissue samples via a 200-μm-core optical fiber. The system performance, dosimetry study, and ablation characteristics of the Tm:YAP laser were tested at different power levels by maximizing the therapeutic effects and minimizing unwanted thermal side-effects. The coagulation and ablation diameters were measured under microscope. The maximum ablation efficiency (100 × ablation diameter/coagulation diameter) was obtained when the Tm:YAP laser system was operated at 200 mW for 10 s. At this laser dose, the ablation efficiency was found to be 71.4% and 58.7% for cortical and subcortical regions, respectively. The fiber-coupled Tm:YAP laser system in hence proposed for the delivery of photothermal therapies in medical applications. © 2011 Springer-Verlag London Ltd.Item Open Access Effect of double growth factor release on cartilage tissue engineering(2013) Ertan, A.B.; Yilgor P.; Bayyurt, B.; Çalikoǧlu, A.C.; Kaspar Ç.; Kök F.N.; Kose G.T.; Hasirci V.The effects of double release of insulin-like growth factor I (IGF-I) and growth factor β1 (TGF-β1) from nanoparticles on the growth of bone marrow mesenchymal stem cells and their differentiation into cartilage cells were studied on PLGA scaffolds. The release was achieved by using nanoparticles of poly(lactic acid-co-glycolic acid) (PLGA) and poly(N-isopropylacrylamide) (PNIPAM) carrying IGF-I and TGF-β1, respectively. On tissue culture polystyrene (TCPS), TGF-β1 released from PNIPAM nanoparticles was found to have a significant effect on proliferation, while IGF-I encouraged differentiation, as shown by collagen type II deposition. The study was then conducted on macroporous (pore size 200-400μm) PLGA scaffolds. It was observed that the combination of IGF-I and TGF-β1 yielded better results in terms of collagen type II and aggrecan expression than GF-free and single GF-containing applications. It thus appears that gradual release of a combination of growth factors from nanoparticles could make a significant contribution to the quality of the engineered cartilage tissue. © 2011 John Wiley & Sons, Ltd.Item Open Access De novo insertions and deletions of predominantly paternal origin are associated with autism spectrum disorder(Elsevier, 2014) Dong, S.; Walker, M.F.; Carriero, N.J.; DiCola, M.; Willsey, A.; Ye, A.Y.; Waqar, Z.; Gonzalez L.E.; Overton J.D.; Frahm, S.; Keaney J.F.; III, Teran, N.A.; Dea J.; Mandell J.D.; HusBal V.; Sullivan, C.A.; DiLullo, N.M.; Khalil, R.O.; Gockley J.; Yuksel, Z.; Sertel, S.M.; Ercan-Sencicek, A.G.; Gupta, A.R.; Mane, S.M.; Sheldon, M.; Brooks, A.I.; Roeder, K.; Devlin, B.; State, M.W.; Wei L.; Sanders, S.J.Whole-exome sequencing (WES) studies have demonstrated the contribution of de novo loss-of-function single-nucleotide variants (SNVs) to autism spectrum disorder (ASD). However, challenges in the reliable detection of de novo insertions and deletions (indels) have limited inclusion of these variants in prior analyses. By applying a robust indel detection method to WES data from 787 ASD families (2,963 individuals), we demonstrate that de novo frameshift indels contribute to ASD risk (OR= 1.6; 95% CI= 1.0-2.7; p= 0.03), are more common in female probands (p= 0.02), are enriched among genes encoding FMRP targets (p= 6× 10-9), and arise predominantly on the paternal chromosome (p< 0.001). On the basis of mutation rates in probands versus unaffected siblings, we conclude that de novo frameshift indels contribute to risk in approximately 3% of individuals with ASD. Finally, by observing clustering of mutations in unrelated probands, we uncover two ASD-associated genes: KMT2E (MLL5), a chromatin regulator, and RIMS1, a regulator of synaptic vesicle release. © 2014 The Authors.Item Open Access Prostate stem cell antigen is an endogenous lynx1-like prototoxin that antagonizes α7-containing nicotinic receptors and prevents programmed cell death of parasympathetic neurons(2009) Hruska, M.; Keefe J.; Wert, D.; Tekinay, A.B.; Hulce J.J.; Ibañez-Tallon I.; Nishi, R.Vertebrate α-bungarotoxin-like molecules of the Ly-6 superfamily have been implicated as balancers of activity and survival in the adult nervous system. To determine whether a member of this family could be involved in the development of the avian ciliary ganglion, we identified 6 Gallus genes by their homology in structure to mouse lynx1 and lynx2. One of these genes, an ortholog of prostate stem cell antigen (psca), is barely detectable at embryonic day (E) 8, before neuronal cell loss in the ciliary ganglion, but increases > 100-fold as the number of neurons begins to decline between E9 and E14. PSCA is highly expressed in chicken and mouse telencephalon and peripheral ganglia and correlates with expression of α7-containing nicotinic acetylcholine receptors (α7-nAChRs). Misexpressing PSCA before cell death in the ciliary ganglion blocks α7-nAChR activation by nicotine and rescues the choroid subpopulation from dying. Thus, PSCA, a molecule previously identified as a marker of prostate cancer, is a member of the Ly-6 neurotoxin-like family in the nervous system, and is likely to play a role as a modulator of α7 signaling-induced cell death during development. Copyright © 2009 Society for Neuroscience.Item Open Access Resveratrol affects histone 3 lysine 27 methylation of vessels and blood biomarkers in DOCA salt-induced hypertension(Kluwer Academic Publishers, 2015) Han, S.; Uludag, M.O.; Usanmaz, S.E.; Ayaloglu-Butun F.; Akcali, K.C.; Demirel-Yilmaz, E.Hypertension is a risk factor for the cardiovascular diseases. Although, several drugs are used to treat hypertension, the success of the antihypertensive therapy is limited. Resveratrol decreases blood pressure in animal models of hypertension. This study researched the mechanisms behind the effects of resveratrol on hypertension. Hypertension was induced by using the deoxycorticosterone acetate (DOCA)-induced (15 mg/kg twice per week, subcutaneously) salt-sensitive hypertension model of Wistar rats. Hypertension caused a decrease in endothelium-dependent relaxations of the isolated thoracic aorta. Resveratrol treatment (50 mg/l in drinking water) prevented DOCA salt-induced hypertension, but did not improve endothelial dysfunction. Plasma nitric oxide (NO), asymmetric dimethylarginine (ADMA), total antioxidant capacity (TAC) and hydrogen sulfide (H2S) levels were not changed by DOCA salt application. However, treatment of resveratrol significantly decreased ADMA and increased TAC and H2S levels. NO level in circulation was not significantly changed by resveratrol. DOCA salt application and resveratrol treatment also caused an alteration in the epigenetic modification of vessels. Staining pattern of histone 3 lysine 27 methylation (H3K27me3) in the aorta and renal artery sections was changed. These results show that preventive effect of resveratrol on DOCA salt-induced hypertension might due to its action on the production of some blood biomarkers and the epigenetic modification of vessels that would focus upon new aspect of hypertension prevention and treatment. © 2014, Springer Science+Business Media Dordrecht.Item Open Access A role for LYNX2 in anxiety-related behavior(2009) Tekinay, A.B.; Nong, Y.; Miwa J.M.; Lieberam I.; Ibanez-Tallon I.; Greengard P.; Heintz, N.Anxiety disorders are the most prevalent mental disorders in developed societies. Although roles for the prefrontal cortex, amygdala, hippocampus and mediodorsal thalamus in anxiety disorders are well documented, molecular mechanisms contributing to the functions of these structures are poorly understood. Here we report that deletion of Lynx2, a mammalian prototoxin gene that is expressed at high levels in anxiety associated brain areas, results in elevated anxiety-like behaviors. We show that LYNX2 can bind to and modulate neuronal nicotinic receptors, and that loss of Lynx2 alters the actions of nicotine on glutamatergic signaling in the prefrontal cortex. Our data identify Lynx2 as an important component of the molecular mechanisms that control anxiety, and suggest that altered glutamatergic signaling in the prefrontal cortex of Lynx2 mutant mice contributes to increased anxiety-related behaviors.