BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "accuracy"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    GOPred: GO molecular function prediction by combined classifiers
    (2010) Saraç Ö.S.; Atalay V.; Cetin-Atalay, R.
    Functional protein annotation is an important matter for in vivo and in silico biology. Several computational methods have been proposed that make use of a wide range of features such as motifs, domains, homology, structure and physicochemical properties. There is no single method that performs best in all functional classification problems because information obtained using any of these features depends on the function to be assigned to the protein. In this study, we portray a novel approach that combines different methods to better represent protein function. First, we formulated the function annotation problem as a classification problem defined on 300 different Gene Ontology (GO) terms from molecular function aspect. We presented a method to form positive and negative training examples while taking into account the directed acyclic graph (DAG) structure and evidence codes of GO. We applied three different methods and their combinations. Results show that combining different methods improves prediction accuracy in most cases. The proposed method, GOPred, is available as an online computational annotation tool (http://kinaz.fen.bilkent.edu.tr/gopred). © 2010 Saraç et al.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel
    (Nature Publishing Group, 2014) Delaneau O.; Marchini J.; McVeanh G.A.; Donnelly P.; Lunter G.; Marchini J.L.; Myers, S.; Gupta-Hinch, A.; Iqbal, Z.; Mathieson I.; Rimmer, A.; Xifara, D.K.; Kerasidou, A.; Churchhouse, C.; Altshuler, D.M.; Gabriel, S.B.; Lander, E.S.; Gupta, N.; Daly, M.J.; DePristo, M.A.; Banks, E.; Bhatia G.; Carneiro, M.O.; Del Angel G.; Genovese G.; Handsaker, R.E.; Hartl, C.; McCarroll, S.A.; Nemesh J.C.; Poplin, R.E.; Schaffner, S.F.; Shakir, K.; Sabeti P.C.; Grossman, S.R.; Tabrizi, S.; Tariyal, R.; Li H.; Reich, D.; Durbin, R.M.; Hurles, M.E.; Balasubramaniam, S.; Burton J.; Danecek P.; Keane, T.M.; Kolb-Kokocinski, A.; McCarthy, S.; Stalker J.; Quail, M.; Ayub Q.; Chen, Y.; Coffey, A.J.; Colonna V.; Huang, N.; Jostins L.; Scally, A.; Walter, K.; Xue, Y.; Zhang, Y.; Blackburne, B.; Lindsay, S.J.; Ning, Z.; Frankish, A.; Harrow J.; Chris, T.-S.; Abecasis G.R.; Kang H.M.; Anderson P.; Blackwell, T.; Busonero F.; Fuchsberger, C.; Jun G.; Maschio, A.; Porcu, E.; Sidore, C.; Tan, A.; Trost, M.K.; Bentley, D.R.; Grocock, R.; Humphray, S.; James, T.; Kingsbury, Z.; Bauer, M.; Cheetham, R.K.; Cox, T.; Eberle, M.; Murray L.; Shaw, R.; Chakravarti, A.; Clark, A.G.; Keinan, A.; Rodriguez-Flores J.L.; De LaVega F.M.; Degenhardt J.; Eichler, E.E.; Flicek P.; Clarke L.; Leinonen, R.; Smith, R.E.; Zheng-Bradley X.; Beal, K.; Cunningham F.; Herrero J.; McLaren W.M.; Ritchie G.R.S.; Barker J.; Kelman G.; Kulesha, E.; Radhakrishnan, R.; Roa, A.; Smirnov, D.; Streeter I.; Toneva I.; Gibbs, R.A.; Dinh H.; Kovar, C.; Lee, S.; Lewis L.; Muzny, D.; Reid J.; Wang, M.; Yu F.; Bainbridge, M.; Challis, D.; Evani, U.S.; Lu J.; Nagaswamy, U.; Sabo, A.; Wang, Y.; Yu J.; Fowler G.; Hale W.; Kalra, D.; Green, E.D.; Knoppers, B.M.; Korbel J.O.; Rausch, T.; Sttz, A.M.; Lee, C.; Griffin L.; Hsieh, C.-H.; Mills, R.E.; Von Grotthuss, M.; Zhang, C.; Shi X.; Lehrach H.; Sudbrak, R.; Amstislavskiy V.S.; Lienhard, M.; Mertes F.; Sultan, M.; Timmermann, B.; Yaspo, M.L.; Herwig, S.R.; Mardis, E.R.; Wilson, R.K.; Fulton L.; Fulton, R.; Weinstock G.M.; Chinwalla, A.; Ding L.; Dooling, D.; Koboldt, D.C.; McLellan, M.D.; Wallis J.W.; Wendl, M.C.; Zhang Q.; Marth G.T.; Garrison, E.P.; Kural, D.; Lee W.-P.; Leong W.F.; Ward, A.N.; Wu J.; Zhang, M.; Nickerson, D.A.; Alkan, C.; Hormozdiari F.; Ko, A.; Sudmant P.H.; Schmidt J.P.; Davies, C.J.; Gollub J.; Webster, T.; Wong, B.; Zhan, Y.; Sherry, S.T.; Xiao, C.; Church, D.; Ananiev V.; Belaia, Z.; Beloslyudtsev, D.; Bouk, N.; Chen, C.; Cohen, R.; Cook, C.; Garner J.; Hefferon, T.; Kimelman, M.; Liu, C.; Lopez J.; Meric P.; Ostapchuk, Y.; Phan L.; Ponomarov, S.; Schneider V.; Shekhtman, E.; Sirotkin, K.; Slotta, D.; Zhang H.; Wang J.; Fang X.; Guo X.; Jian, M.; Jiang H.; Jin X.; Li G.; Li J.; Li, Y.; Liu X.; Lu, Y.; Ma X.; Tai, S.; Tang, M.; Wang, B.; Wang G.; Wu H.; Wu, R.; Yin, Y.; Zhang W.; Zhao J.; Zhao, M.; Zheng X.; Lachlan H.; Fang L.; Li Q.; Li, Z.; Lin H.; Liu, B.; Luo, R.; Shao H.; Wang, B.; Xie, Y.; Ye, C.; Yu, C.; Zheng H.; Zhu H.; Cai H.; Cao H.; Su, Y.; Tian, Z.; Yang H.; Yang L.; Zhu J.; Cai, Z.; Wang J.; Albrecht, M.W.; Borodina, T.A.; Auton, A.; Yoon, S.C.; Lihm J.; Makarov V.; Jin H.; Kim W.; Kim, K.C.; Gottipati, S.; Jones, D.; Cooper, D.N.; Ball, E.V.; Stenson P.D.; Barnes, B.; Kahn, S.; Ye, K.; Batzer, M.A.; Konkel, M.K.; Walker J.A.; MacArthur, D.G.; Lek, M.; Shriver, M.D.; Bustamante, C.D.; Gravel, S.; Kenny, E.E.; Kidd J.M.; Lacroute P.; Maples, B.K.; Moreno-Estrada, A.; Zakharia F.; Henn, B.; Sandoval, K.; Byrnes J.K.; Halperin, E.; Baran, Y.; Craig, D.W.; Christoforides, A.; Izatt, T.; Kurdoglu, A.A.; Sinari, S.A.; Homer, N.; Squire, K.; Sebat J.; Bafna V.; Ye, K.; Burchard, E.G.; Hernandez, R.D.; Gignoux, C.R.; Haussler, D.; Katzman, S.J.; Kent W.J.; Howie, B.; Ruiz-Linares, A.; Dermitzakis, E.T.; Lappalainen, T.; Devine, S.E.; Liu X.; Maroo, A.; Tallon L.J.; Rosenfeld J.A.; Michelson L.P.; Angius, A.; Cucca F.; Sanna, S.; Bigham, A.; Jones, C.; Reinier F.; Li, Y.; Lyons, R.; Schlessinger, D.; Awadalla P.; Hodgkinson, A.; Oleksyk, T.K.; Martinez-Cruzado J.C.; Fu, Y.; Liu X.; Xiong, M.; Jorde L.; Witherspoon, D.; Xing J.; Browning, B.L.; Hajirasouliha I.; Chen, K.; Albers, C.A.; Gerstein, M.B.; Abyzov, A.; Chen J.; Fu, Y.; Habegger L.; Harmanci, A.O.; Mu X.J.; Sisu, C.; Balasubramanian, S.; Jin, M.; Khurana, E.; Clarke, D.; Michaelson J.J.; OSullivan, C.; Barnes, K.C.; Gharani, N.; Toji L.H.; Gerry, N.; Kaye J.S.; Kent, A.; Mathias, R.; Ossorio P.N.; Parker, M.; Rotimi, C.N.; Royal, C.D.; Tishkoff, S.; Via, M.; Bodmer W.; Bedoya G.; Yang G.; You, C.J.; Garcia-Montero, A.; Orfao, A.; Dutil J.; Brooks L.D.; Felsenfeld, A.L.; McEwen J.E.; Clemm, N.C.; Guyer, M.S.; Peterson J.L.; Duncanson, A.; Dunn, M.; Peltonen L.
    A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes across each chromosome. We then phase the sequence data 'onto' this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Interventional MRI: tapering improves the distal sensitivity of the loopless antenna
    (Wiley, 2010) Qian, D.; El-Sharkawy, A. M. M.; Atalar, Ergin; Bottomley, P. A.
    The "loopless antenna" is an interventional MRI detector consisting of a tuned coaxial cable and an extended inner conductor or "whip". A limitation is the poor sensitivity afforded at, and immediately proximal to, its distal end, which is exacerbated by the extended whip length when the whip is uniformly insulated. It is shown here that tapered insulation dramatically improves the distal sensitivity of the loopless antenna by pushing the current sensitivity toward the tip. The absolute signal-to-noise ratio is numerically computed by the electromagnetic method-of-moments for three resonant 3-T antennae with no insulation, uniform insulation, and with linearly tapered insulation. The analysis shows that tapered insulation provides an ∼400% increase in signal-to-noise ratio in trans-axial planes 1 cm from the tip and a 16-fold increase in the sensitive area as compared to an equivalent, uniformly insulated antenna. These findings are directly confirmed by phantom experiments and by MRI of an aorta specimen. The results demonstrate that numerical electromagnetic signal-tonoise ratio analysis can accurately predict the loopless detector's signal-to-noise ratio and play a central role in optimizing its design. The manifold improvement in distal signal-to-noise ratio afforded by redistributing the insulation should improve the loopless antenna's utility for interventional MRI.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback