Browsing by Subject "X-ray diffraction"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Effects of rapid thermal annealing on the structural and local atomic properties of ZnO: Ge nanocomposite thin films(A I P Publishing LLC, 2015) Ceylan, A.; Rumaiz, A. K.; Caliskan, D.; Ozcan, S.; Özbay, Ekmel; Woicik, J. C.We have investigated the structural and local atomic properties of Ge nanocrystals (Ge-ncs) embedded ZnO (ZnO: Ge) thin films. The films were deposited by sequential sputtering of ZnO and Ge thin film layers on z-cut quartz substrates followed by an ex-situ rapid thermal annealing (RTA) at 600 °C for 30, 60, and 90 s under forming gas atmosphere. Effects of RTA time on the evolution of Ge-ncs were investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM), hard x-ray photoelectron spectroscopy (HAXPES), and extended x-ray absorption fine structure (EXAFS). XRD patterns have clearly shown that fcc diamond phase Ge-ncs of sizes ranging between 18 and 27 nm are formed upon RTA and no Ge-oxide peak has been detected. However, cross-section SEM images have clearly revealed that after RTA process, Ge layers form varying size nanoclusters composed of Ge-ncs regions. EXAFS performed at the Ge K-edge to probe the local atomic structure of the Ge-ncs has revealed that as prepared ZnO:Ge possesses Ge-oxide but subsequent RTA leads to crystalline Ge structure without the oxide layer. In order to study the occupied electronic structure, HAXPES has been utilized. The peak separation between the Zn 2p and Ge 3d shows no significant change due to RTA. This implies little change in the valence band offset due to RTA. © 2015 AIP Publishing LLC.Item Open Access Magnetic Properties and Environmental Temperature Effects on Battery Performance of Na0.67Mn0.5Fe0.5O2(Wiley-VCH Verlag GmbH & Co. KGaA, 2021-03-31) Altın, S.; Bayri, A.; Altın, E.; Öz, Erdinç; Yaşar, S.; Altundağ, S.; Harfouche, M.; Avcı, S.Herein, a modified solid state synthesis of Na0.67Mn0.5Fe0.5O2 and the results of a detailed investigation of the structural and magnetic properties via Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) analysis are reported. The magnetic properties of Na0.67Mn0.5Fe0.5O2 do not fit the Curie–Weiss law and a model regarding the spin configuration of the Mn and Fe ions and a possible ferrimagnetic order is suggested. Electrochemical measurements and ex situ structural analysis of the cathode material confirm the reversible structural transitions for the cells charged up to 4.0 V. Environmental temperature–dependent electrochemical measurements reveal a strong temperature dependence of both, the initial capacity and the capacity retention. Ex situ SEM, FTIR, and XRD studies on the battery membrane verify the formation of a Na2CO3 phase on the membrane, which blocks the Na ion diffusion through membrane pores and is responsible for the capacity fade for this compound.Item Open Access One-dimensional copper (II) coordination polymer as an electrocatalyst for water oxidation(Wiley-VCH Verlag, 2017) Mishra, R.; Ülker, E.; Karadas, F.Although cobalt-based heterogeneous catalysts are the central focus in water oxidation research, interest in copper-based water oxidation catalysts has been growing thanks the great abundance of copper and its biological relevance. Several copper oxides have recently been reported to be active catalysts for water oxidation. In this study, a heterogeneous copper-based water oxidation catalyst that is not an oxide has been reported for the first time. Single-crystal XRD studies indicate that the compound is a one-dimensional coordination compound incorporating copper paddle-wheel units connected through phosphine dioxide ligands. The catalyst exhibits an onset potential of 372 mV at pH 10.2, whereas an overpotential of only 563 mV is required to produce a current density of 1 mA cm−2. In addition to cyclic voltammetric and chronoamperometric studies, an investigation into the effect of pH on the catalytic activity and the robustness of the catalyst using long-term bulk electrolysis (12 h) is presented.