Browsing by Subject "Wireless Telecommunication Systems"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Exploiting data mining techniques for broadcasting data in mobile computing environments(IEEE, 2002) Saygin, Y.; Ulusoy, ÖzgürMobile computers can be equipped with wireless communication devices that enable users to access data services from any location. In wireless communication, the server-to-client (downlink) communication bandwidth is much higher than the client-to-server (uplink) communication bandwidth. This asymmetry makes the dissemination of data to client machines a desirable approach. However, dissemination of data by broadcasting may induce high access latency in case the number of broadcast data items is large. In this paper, we propose two methods aiming to reduce client access latency of broadcast data. Our methods are based on analyzing the broadcast history (i.e., the chronological sequence of items that have been requested by clients) using data mining techniques. With the first method, the data items in the broadcast disk are organized in such a way that the items requested subsequently are placed close to each other. The second method focuses on improving the cache hit ratio to be able to decrease the access latency. It enables clients to prefetch the data from the broadcast disk based on the rules extracted from previous data request patterns. The proposed methods are implemented on a Web log to estimate their effectiveness. It is shown through performance experiments that the proposed rule-based methods are effective in improving the system performance in terms of the average latency as well as the cache hit ratio of mobile clients.Item Open Access Iterative disaggregation for a class of lumpable discrete-time stochastic automata networks(Elsevier, 2003) Gusak, O.; Dayar T.; Fourneau, J. M.Stochastic automata networks (SANs) have been developed and used in the last 15 years as a modeling formalism for large systems that can be decomposed into loosely connected components. In this work, we concentrate on the not so much emphasized discrete-time SANs. First, we remodel and extend an SAN that arises in wireless communications. Second, for an SAN with functional transitions, we derive conditions for a special case of ordinary lumpability in which aggregation is done automaton by automaton. Finally, for this class of lumpable discrete-time SANs we devise an efficient aggregation-iterative disaggregation algorithm and demonstrate its performance on the SAN model of interest. © 2002 Elsevier Science B.V. All rights reserved.Item Open Access Power efficient data gathering and aggregation in wireless sensor networks(Association for Computing Machinery, 2003) Tan, H. Ö.; Körpeoǧlu, İ.Recent developments in processor, memory and radio technology have enabled wireless sensor networks which are deployed to collect useful information from an area of interest The sensed data must be gathered and transmitted to a base station where it is further processed for end-user queries. Since the network consists of low-cost nodes with limited battery power, power efficient methods must be employed for data gathering and aggregation in order to achieve long network lifetimes. In an environment where in a round of communication each of the sensor nodes has data to send to a base station, it is important to minimize the total energy consumed by the system in a round so that the system lifetime is maximized. With the use of data fusion and aggregation techniques, while minimizing the total energy per round, if power consumption per node can be balanced as well, a near optimal data gathering and routing scheme can be achieved in terms of network lifetime. So far, besides the conventional protocol of direct transmission, two elegant protocols called LEACH and PEGASIS have been proposed to maximize the lifetime of a sensor network. In this paper, we propose two new algorithms under name PEDAP (Power Efficient Data gathering and Aggregation Protocol), which are near optimal minimum spanning tree based routing schemes, where one of them is the power-aware version of the other. Our simulation results show that our algorithms perform well both in systems where base station is far away from and where it is in the center of the field. PEDAP achieves between 4x to 20x improvement in network lifetime compared with LEACH, and about three times improvement compared with PEGASIS.