BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Winding"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Modeling of thermal sensitivity of a fiber optic gyroscope coil with practical quadrupole winding
    (SPIE, 2017) Ogut, Serdar; Osunluk B.; Özbay, Ekmel
    Thermally induced bias error is one of the main performance limits for the fiber optic gyroscopes (FOGs). We reviewed the thermal sensitivity of FOG in detail and created a simulation environment by the Finite Element Method (FEM). Thermal sensitivity analysis is based on Shupe and elastooptic effects. Elastooptical interactions are modeled by using the two different FEM simulations and homogenization-dehomogenization processes. FEM simulations are validated by comparing the results with a laboratory FOG setup. We report the changes in the error characteristics for practical quadruple winding patterns. © COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Thermally induced bias errors for a fiber coil with practical quadrupole winding
    (Institute of Electrical and Electronics Engineers Inc., 2017) Osunluk, Berk; Ogut, Serdar; Özbay, Ekmel
    This paper presents an advanced thermal modeling of a fiber optic gyroscope (FOG) coil. We extended the current models to practical quadrupole winding. Model covers homogenization/dehomogenization parameters of fiber coil. A simulation environment is created by the Finite Element Method (FEM). Simulation environment is validated by comparing the results with laboratory FOG experiments.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback