Browsing by Subject "Wind energy"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Risk-averse optimization of wind-based electricity generation with battery storage(2022-12) Eser, MerveAs the global installed capacity of wind power increases, various solutions have been developed to accommodate the intermittent nature of wind. Investing in battery storage reduces power fluctuations, improves the reliability of delivering power on demand, and decreases wind curtailment. In the literature, power producers are generally modelled as risk-neutral decision makers, and the focus has been on expected profit maximization. For many privately-held small independent power producers, it is more important to capture their risk-aversion through specialized risk measurements driven by the owners’ specific risk preferences, even though the expected value-maximization objective is very desirable for large corporations with diversified investors. We consider a risk-averse, privately-held, small Independent Power Producer interested in investing in a battery storage system and jointly operating the wind farm and storage system with a trans-mission line connected to the market. We formulate the problem as a Markov decision process (MDP) to find optimal investment, generation, and operational storage decisions. Using dynamic coherent risk measures, we incorporate risk-aversion into our formulation. By choosing the risk measure as first-order mean semi-deviation, we obtain optimal threshold-based policy structure as well as optimal storage investment capacity. We perform a sensitivity analysis on optimal storage capacity with respect to the risk-aversion degree and transmission line limitations.Item Open Access A stochastic framework to evaluate the impact of agricultural load flexibility on the sizing of renewable energy systems(Elsevier, 2020) Kocaman, Ayşe Selin; Özyörük, Emin; Taneja, S.; Modi, V.Pumping of water for agriculture can be a flexible component of electric demand. In this study, a framework that involves scenario based stochastic programming models is developed to examine the effect of load shifting on the renewable energy system sizing for agricultural load. With the help of this framework, alternative load shifting policies are evaluated to observe how the intrinsic flexibility of agricultural load reduces the amount of investments while designing a renewable system. Using real data from India’s Gujarat region, solar and wind cases are evaluated separately to understand the coherency between these sources and the agricultural demand. The value of using a dispatchable source to help with the intermittency of the renewable sources in the systems is discussed. It is also shown that energy storage can be a convenient control mechanism for the integration of renewables; however, is an expensive substitute for demand response programs for agricultural load. Benchmarks for the incentive amounts that can be provided for alternative load shifting policies are presented.