Browsing by Subject "White-light generation"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Synthesis of fluorescent core-shell nanomaterials and strategies to generate white light(American Institute of Physics Inc., 2015) Singh, A.; Kaur, R.; Pandey, O. P.; Wei, X.; Sharma, M.In this work, cadmium free core-shell ZnS:X/ZnS (X-=-Mn, Cu) nanoparticles have been synthesized and used for white light generation. First, the doping concentration of Manganese (Mn) was varied from 1% to 4% to optimize the dopant related emission and its optimal value was found to be 1%. Then, ZnS shell was grown over ZnS:Mn(1%) core to passivate the surface defects. Similarly, the optimal concentration of Copper (Cu) was found to be 0.8% in the range varied from 0.6% to 1.2%. In order to obtain an emission in the whole visible spectrum, dual doping of Mn and Cu was done in the core and the shell, respectively. A solid-solid mixing in different ratios of separately doped quantum dots (QDs) emitting in the blue green and the orange region was performed. Results show that the optimum mixture of QDs excited at 300-nm gives Commission Internationale del'Éclairage color coordinates of (0.35, 0.36), high color rendering index of 88, and correlated color temperature of 4704-K with minimum self-absorption. © 2015 AIP Publishing LLC.Item Open Access Wavelength dependent color conversion of CdSe/ZnS core/shell nanocrystals for white LEDs(IEEE, 2009) Nizamoğlu, Sedat; Demir, Hilmi VolkanNanocrystals (NCs) provide narrow emission spectrum that can be conveniently tuned using quantum size effect. This ability to adjust and control emission spectrum of NCs makes them strong candidates for use in white color conversion light emitting diodes. For example, they are possibly be used for solid state lighting applications including indoor lighting, architectural lighting and scotopic street lighting, where spectrally tuned color conversion is necessary. In device research CdSe/ZnS core/shell nanocrystals are the most commonly used ones because of their good electronic isolation coming from ZnS shells and the resulting high quantum efficiency (QE) (i.e., >50% in solution) [1]. However, when these nanocrystals are integrated into the solid film, e.g., for white light generation, their in-film QE undesirably drops (despite their high QE in solution). Hence, this adversely affects the overall efficiency of the integrating devices that incorporate these NCs [2]. There have been various studies to understand the in-film optical properties of CdSe/ZnS core/shell NCs [3-5]. However, their spectrally resolved in-film quantum efficiency (i.e., the ratio of the number of photons emitted by the nanocrystal film to the number of photons absorbed in the nanocrystal film) and their photon conversion efficiency (i.e., the ratio of the number of photons emitted by the nanocrystal film to the number of photons incident to the nanocrystal film) have not been investigated in these previous studies. © 2009 IEEE.Item Open Access White light generation with azide functionalized polyfluorene hybridized on near-UV light emitting diode(OSA, 2007) Hüyal, İlkem Özge; Özel, Tuncay; Nizamoğlu, Sedat; Koldemir, Ünsal; Tuncel, Dönüş; Demir, Hilmi VolkanWe present white light generation using poly[(9,9-dihexylfluorene)-co-alt- (9,9-bis-(6- azidohexyl)fluorene] (PFA) for the first time. Hybridizing PFA on near-UV LED, we demonstrate high color rendering index up to 91.0.Item Open Access White light generation with CdSe/ZnS core-shell nanocrystals and InGaN/GaN light emitting diodes(IEEE, 2006) Nizamoğlu, Sedat; Özel, Sedat; Sarı, Emre; Demir, Hilmi VolkanWe present hybrid white light sources that integrate CdSe/ZnS core-shell nanocrystals on blue InGaN/GaN light emitting diodes (LED). We report on the demonstrations of white light generation using yellow nanocrystals (λPL=580 nm) hybridized on a blue LED (λEL= 440 nm) with tristimulus coordinates of x=0.37 and y=0.25, correlated color temperature of Tc=2692 K, and color rendering index of R a=14.6; cyan and red nanocrystals (λPL=500 nm and 620 nm) on a blue LED (λEL=440 nm) with x=0.37, y=0.28, T c=3246 K, and Ra=19.6; and green, yellow, and red nanocrystals (λPL=540 nm, 580 nm, and 620 nm) on a blue LED (λEL=452 nm) with x=0.30, y=0.28, Tc =7521 K, and Ra=40.9. © 2006 IEEE.Item Open Access White-emitting conjugated polymer nanoparticles with cross-linked shell for mechanical stability and controllable photometric properties in color-conversion LED applications(2011) Park, Eun-Ju; Erdem, T.; Ibrahimova, V.; Nizamoglu, S.; Demir, Hilmi Volkan; Tuncel, D.We report on the synthesis and characterization of water-dispersible, mechanically stable conjugated polymer nanoparticles (CPNs) in shelled architecture with tunable emission and controllable photometric properties via cross-linking. Using a reprecipitation method, whiteemitting polymer nanoparticles are prepared in different sizes by varying the concentration of polymer; the emission kinetics are tuned by controlling the shell formation. For this purpose, polyfluorene derivatives containing azide groups are selected that can be decomposed under UV light to generate very reactive species, which opportunely facilitate the inter- and intra-cross-linking of polymer chains to form shells. Nanoparticles before and after UV treatment are characterized by various techniques. Their size and morphologies are determined by using dynamic light scattering (DLS) measurements and imaging techniques including scanning electron microscopy (SEM) and atomic force microscopy (AFM). For optical characterization, UV vis and steady-state and timeresolved fluorescent spectroscopies are performed. Solid-state behaviors of these CPNs are also investigated by forming films through drop-casting. Moreover, the photometric calculations are also performed for films and dispersions to determine the color quality. A device has been constructed to show proof-of-principle white light generation from these nanoparticles. Additionally, mechanical stability studies are performed and demonstrated that these nanoparticles are indeed mechanically stable by removing the solvent after cross-linking using a freeze-dryer and redispersing in water and THF. Optical and imaging data confirm that the redispersed particles preserve their shapes and sizes after cross-linking.