Browsing by Subject "Wavelet decomposition"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access An audio watermarking algorithm via zero assigned filter banks(IEEE, 2005) Yücel, Zeynep; Özgüler, A. BülentIn order to identify the owner and distributor of digital data, a watermarking scheme for audio files is proposed in frequency domain. The scheme satisfies the imperceptibility and persistence requirements and is robust against additive noise. It consists of a few stages of wavelet decomposition of several frames of the original signal using special zero assigned filter banks. By assigning zeros to filters on the high frequency portion of the spectrum, filter banks with frequency selective response is obtained. Text information is then inserted in the wavelet-decomposed and compressed signal. Several robustness tests are performed on male voice, female voice, and music files.Item Open Access Contact-free measurement of respiratory rate using infrared and vibration sensors(Elsevier BV, 2015) Erden, F.; Alkar, A. Z.; Çetin, A. EnisRespiratory rate is an essential parameter in many practical applications such as apnea detection, patient monitoring, and elderly people monitoring. In this paper, we describe a novel method and a contact-free multi-modal system which is capable of detecting human breathing activity. The multimodal system, which uses both differential pyro-electric infrared (PIR) and vibration sensors, can also estimate the respiratory rate. Vibration sensors pick up small vibrations due to the breathing activity. Similarly, PIR sensors pick up the thoracic movements. Sensor signals are sampled using a microprocessor board and analyzed on a laptop computer. Sensor signals are processed using wavelet analysis and empirical mode decomposition (EMD). Since breathing is almost periodic, a new multi-modal average magnitude difference function (AMDF) is used to detect the periodicity and the period in the processed signals. By fusing the data of two different types of sensors we achieve a more robust and reliable contact-free human breathing activity detection system compared to systems using only one specific type of sensors.Item Open Access Directionally selective fractional wavelet transform using a 2-d non-separable unbalanced lifting structure(Springer, Berlin, Heidelberg, 2012) Keskin, Furkan; Çetin, A. EnisIn this paper, we extend the recently introduced concept of fractional wavelet transform to obtain directional subbands of an image. Fractional wavelet decomposition is based on two-channel unbalanced lifting structures whereby it is possible to decompose a given discrete-time signal x[n] sampled with period T into two sub-signals x 1[n] and x 2[n] whose average sampling periods are pT and qT, respectively. Fractions p and q are rational numbers satisfying the condition: 1/p+1/q=1. Filters used in the lifting structure are designed using the Lagrange interpolation formula. 2-d separable and non-separable extensions of the proposed fractional wavelet transform are developed. Using a non-separable unbalanced lifting structure, directional subimages for five different directions are obtained. © 2012 Springer-Verlag.Item Open Access Leg motion classification with artificial neural networks using wavelet-based features of gyroscope signals(2011) Ayrulu-Erdem, B.; Barshan, B.We extract the informative features of gyroscope signals using the discrete wavelet transform (DWT) decomposition and provide them as input to multi-layer feed-forward artificial neural networks (ANNs) for leg motion classification. Since the DWT is based on correlating the analyzed signal with a prototype wavelet function, selection of the wavelet type can influence the performance of wavelet-based applications significantly. We also investigate the effect of selecting different wavelet families on classification accuracy and ANN complexity and provide a comparison between them. The maximum classification accuracy of 97.7% is achieved with the Daubechies wavelet of order 16 and the reverse bi-orthogonal (RBO) wavelet of order 3.1, both with similar ANN complexity. However, the RBO 3.1 wavelet is preferable because of its lower computational complexity in the DWT decomposition and reconstruction. © 2011 by the authors; licensee MDPI, Basel, Switzerland.Item Open Access Wavelet merged multi-resolution super-pixels and their applications on fluorescent MSC images(IEEE, 2015) Yorulmaz, Onur; Oğuz, Oğuzhan; Akhan, Ece; Tuncel, Dönüş; Atalay, R. Ç.; Çetin, A. EnisA new multi-resolution super-pixel based algorithm is proposed to track cell size, count and motion in Mesenchymal Stem Cells (MSCs) images. Multi-resolution super-pixels are obtained by placing varying density seeds on the image. The density of the seeds are determined according to the local high frequency components of the MSCs image. In this way a multi-resolution super-pixels decomposition of the image is obtained. A second contribution of the paper is novel decision rule for merging similar neighboring super-pixels. An algorithm based on well known wavelet decomposition is developed and applied to the histograms of neighboring super pixels to exploit similarity. The proposed algorithm is experimentally shown to be successful in segmenting and tracking cells in MSCs images.