Browsing by Subject "Waveguide lasers"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Buried waveguides written deep inside silicon(OSA, 2017) Turnalı, Ahmet; Tokel, Onur; Kesim, Denizhan Koray; Makey, Ghaith; Elahi, Parviz; İlday, Fatih ÖmerSummary form only given. Silicon waveguides are widely used as optical interconnects and they are particularly important for Si-photonics. Si-based devices, along with other optical elements, are entirely fabricated on the top surface of Si wafers. However, further integration of photonic and electronic devices in the same chip requires a new approach. One alternative is to utilize the bulk of the wafer for fabricating photonic elements. Recently, we reported a direct-laser-writing method that exploits nonlinear interactions and can generate subsurface modifications inside silicon without damaging the surface. Using this method, we fabricated several functional optical elements including gratings, lenses, and holograms. In this work, we demonstrate optical waveguides entirely embedded in Si.Item Open Access Optical waveguides written deep inside silicon by femtosecond laser(OSA, 2017) Pavlov, Ihor; Tokel, Onur; Pavlova, S.; Kadan, V.; Makey, Ghaith; Turnalı, Ahmet; Çolakoğlu, T.; Yavuz, O.; İlday, Fatih ÖmerSummary form only given. Photonic devices that can guide, transfer or modulate light are highly desired in electronics and integrated silicon photonics. Through the nonlinear processes taking place during ultrafast laser-material interaction, laser light can impart permanent refractive index change in the bulk of materials, and thus enables the fabrication of different optical elements inside the material. However, due to strong multi-photon absorption of Si resulting delocalization of the light by free carriers induced plasma defocusing, the subsurface Si modification with femtosecond laser was not realized so far [1, 2]. Here, we demonstrate optical waveguides written deep inside silicon with a 1.5-μm high repetition rate femtosecond laser. Due to pulse-to-pulse heat accumulation for high repetition rate laser, additional thermal lensing prevents delocalization of the light around focal point, allowing the modification. The laser with 2-μJ pulse energy, 350-fs pulse width, operating at 250 kHz focused in Si produces permanent modifications. The position of the focal point inside of the sample is accurately controlled with pumpprobe imaging during processing. Optical waveguides of ~20-μm diameter, and up to 5.5-mm elongation are fabricated by translating the beam focal position along the optical axis. The waveguides are characterized with a 1.5-μm continuous-wave laser, through optical shadow-graphy (Fig. 1 a-b, e) and direct light coupling (Fig.1 c-d, f). The measured refractive index change obtained by quantitative shadow-graphy is ~6×10 -4 . The numerical aperture of the waveguide measured from decoupled light is 0.05.