Browsing by Subject "Voltage stress"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Analysis of Fe nanoparticles using XPS measurements under d.c. or pulsed-voltage bias(2010) Süzer, Şefik; Baer, D. R.; Engelhard, M. H.The impact of solution exposure on the charging properties of oxide coatings on Fe metal-core oxide-shell nanoparticles has been examined by sample biasing during XPS measurements. The Fe nanoparticles were suspended in relatively unreactive acetone and analyzed after particles containing solutions were deposited on SiO2/Si or Au substrates. The particle and substrate combinations were subjected to ±10V d.c. or ±5V a.c., biasing in the form of square wave (SQW) pulses. The samples experienced variable degrees of charging for which low-energy electrons at ∼1eV, 20 μA and low-energy Ar+ ions were used to minimize it. Application of d.c. bias and/or SQW pulses significantly influences the extent of charging, which is utilized to gather additional analytical information about the sample under investigation. This approach allows separation of otherwise overlapping peaks. Accordingly, the O1s peaks of the silicon oxide substrate, the iron oxide nanoparticles, and that of the casting solvent can be separated from each other. Similarly, the C1s peak belonging to the solvent can be separated from that of the adventitious carbon. The charging shifts of the iron nanoparticles are strongly influenced by the solvent to which the particles were exposed. Hence, acetone exhibited the largest shift, water the smallest, and methanol in between. Dynamical measurements performed by application of the voltage stress in the form of SQW pulses provides information about the time constants of the processes involved, which leads us to postulate that these charging properties we probe in these systems stem mainly from ionic movement(s).Item Open Access Charging/discharging of Au (core)/silica (shell) nanoparticles as revealed by XPS(American Chemical Society, 2005) Tunc, I.; Demirok, U. K.; Süzer, Şefik; Correa-Duatre, M. A.; Liz-Marzan, L. M.By recording XPS spectra while applying external voltage stress to the sample rod, we can control the extent of charging developed on core-shell-type gold nanoparticles deposited on a copper substrate, in both steady-state and time-resolved fashions. The charging manifests itself as a shift in the measured binding energy of the corresponding XPS peak. Whereas the bare gold nanoparticles exhibit no measurable binding energy shift in the Au 4f peaks, both the Au 4f and the Si 2p peaks exhibit significant and highly correlated (in time and magnitude) shifts in the case of gold (core)/silica (shell) nanoparticles. Using the shift in the Au 4f peaks, the capacitance of the 15-nm gold (core)/6-nm silica (shell) nanoparticle/nanocapacitor is estimated as 60 aF. It is further estimated that, in the fully charged situation, only 1 in 1000 silicon dioxide units in the shell carries a positive charge during our XPS analysis. Our simple method of controlling the charging, by application of an external voltage stress during XPS analysis, enables us to detect, locate, and quantify the charges developed on surface structures in a completely noncontact fashion. © 2005 American Chemical Society.